دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 2nd ed., 3rd print
نویسندگان: Fossen. Haakon
سری:
ISBN (شابک) : 9781107057647, 1107057647
ناشر: Cambridge University Press
سال نشر: 2019;2016
تعداد صفحات: 0
زبان: English
فرمت فایل : AZW3 (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 32 مگابایت
کلمات کلیدی مربوط به کتاب زمین شناسی ساختاری: زمین شناسی ساختاری، زمین شناسی، ساختاری، زمین شناسی ساختاری
در صورت تبدیل فایل کتاب Structural Geology به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب زمین شناسی ساختاری نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب درسی پیشرو در بازار بهروزرسانی شده است تا شامل فصلی در مورد مفاصل و رگها، نمونههای اضافی و عکسهای جدید خیرهکننده باشد.
This market-leading textbook has been updated to include a chapter on joints and veins, additional examples and stunning new photos.
Cover Half-title page Title page Copyright page Contents How to use this book Preface Acknowledgments Symbols 1 Structural geology and structural analysis 1.1 Approaching structural geology 1.2 Structural geology and tectonics 1.3 Structural data sets 1.4 Field data 1.5 Remote sensing and geodesy 1.6 DEM, GIS and Google Earth 1.7 Seismic data 1.8 Experimental data 1.9 Numerical modeling 1.10 Other data sources 1.11 Organizing the data 1.12 Structural analysis 1.13 Concluding remarks 2 Deformation 2.1 What is deformation? 2.2 Components of deformation 2.3 System of reference 2.4 Deformation: detached from history 2.5 Homogeneous and heterogeneous deformation 2.6 Mathematical description of deformation 2.7 One-dimensional strain 2.8 Strain in two dimensions 2.9 Three-dimensional strain 2.10 The strain ellipsoid 2.11 More about the strain ellipsoid 2.12 Volume change 2.13 Uniaxial strain (compaction) 2.14 Pure shear and coaxial deformations 2.15 Simple shear 2.16 Subsimple shear 2.17 Progressive deformation and flow parameters 2.18 Velocity field 2.19 Flow apophyses 2.20 Vorticity and Wk 2.21 Steady-state deformation 2.22 Incremental deformation 2.23 Strain compatibility and boundary conditions 2.24 Deformation history from deformed rocks 2.25 Coaxiality and progressive simple shear 2.26 Progressive pure shear 2.27 Progressive subsimple shear 2.28 Simple and pure shear and their scale dependence 2.29 General three-dimensional deformation 2.30 Stress versus strain Summary 3 Strain in rocks 3.1 Why perform strain analysis? 3.2 Strain in one dimension 3.3 Strain in two dimensions 3.4 Strain in three dimensions Summary 4 Stress 4.1 Definitions, magnitudes and units 4.2 Stress on a surface 4.3 Stress at a point 4.4 Stress components 4.5 The stress tensor (matrix) 4.6 Deviatoric stress and mean stress 4.7 Mohr circle and diagram Summary 5 Stress in the lithosphere 5.1 Importance of stress measurements 5.2 Stress measurements 5.3 Reference states of stress 5.4 The thermal effect on horizontal stress 5.5 Residual stress 5.6 Tectonic stress 5.7 Global stress patterns 5.8 Differential stress, deviatoric stress and some implications Summary 6 Rheology 6.1 Rheology and continuum mechanics 6.2 Idealized conditions 6.3 Elastic materials 6.4 Plasticity and flow: permanent deformation 6.5 Combined models 6.6 Experiments 6.7 The role of temperature, water, etc. 6.8 Definition of plastic, ductile and brittle deformation 6.9 Rheology of the lithosphere Summary 7 Fracture and brittle deformation 7.1 Brittle deformation mechanisms 7.2 Types of fractures 7.3 Failure and fracture criteria 7.4 Microdefects and failure 7.5 Fracture termination and interaction 7.6 Reactivation and frictional sliding 7.7 Fluid pressure, effective stress and poroelasticity 7.8 Deformation bands and fractures in porous rocks Summary 8 Joints and veins 8.1 Definition and characteristics 8.2 Kinematics and stress 8.3 How, why and where joints form 8.4 Joint distributions 8.5 Growth and morphology of joints 8.6 Joint interaction and relative age 8.7 Joints, permeability and fluid flow 8.8 Veins Summary 9 Faults 9.1 Fault terminology 9.2 Fault anatomy 9.3 Displacement distribution 9.4 Identifying faults in an oil field setting 9.5 The birth and growth of faults 9.6 Growth of fault populations 9.7 Faults, communication and sealing properties Summary 10 Kinematics and paleostress in the brittle regime 10.1 Kinematic criteria 10.2 Stress from faults 10.3 A kinematic approach to fault slip data 10.4 Contractional and extensional structures Summary 11 Deformation at the microscale 11.1 Deformation mechanisms and microstructures 11.2 Brittle versus plastic deformation mechanisms 11.3 Brittle deformation mechanisms 11.4 Mechanical twinning 11.5 Crystal defects 11.6 From the atomic scale to microstructures Summary 12 Folds and folding 12.1 Geometric description 12.2 Folding: mechanisms and processes 12.3 Fold interference patterns and refolded folds 12.4 Folds in shear zones 12.5 Folding at shallow crustal depths Summary 13 Foliation and cleavage 13.1 Basic concepts 13.2 Relative age terminology 13.3 Cleavage development 13.4 Cleavage, folds and strain 13.5 Foliations in quartzites, gneisses and mylonite zones Summary 14 Lineations 14.1 Basic terminology 14.2 Lineations related to plastic deformation 14.3 Lineations in the brittle regime 14.4 Lineations and kinematics Summary 15 Boudinage 15.1 Boudinage and pinch-and-swell structures 15.2 Geometry, viscosity and strain 15.3 Asymmetric boudinage and rotation 15.4 Foliation boudinage 15.5 Boudinage and the strain ellipse 15.6 Large-scale boudinage Summary 16 Shear zones and mylonites 16.1 What is a shear zone? 16.2 The ideal plastic shear zone 16.3 Adding pure shear to a simple shear zone 16.4 Non-plane strain shear zones 16.5 Mylonites and kinematic indicators 16.6 Growth of shear zones Summary 17 Contractional regimes 17.1 Contractional faults 17.2 Thrust faults 17.3 Ramps, thrusts and folds 17.4 Orogenic wedges Summary 18 Extensional regimes 18.1 Extensional faults 18.2 Fault systems 18.3 Low-angle faults and core complexes 18.4 Ramp-flat-ramp geometries 18.5 Footwall versus hanging-wall collapse 18.6 Rifting 18.7 Half-grabens and accommodation zones 18.8 Pure and simple shear models 18.9 Stretching estimates, fractals and power-law relations 18.10 Passive margins and oceanic rifts 18.11 Orogenic extension and orogenic collapse 18.12 Postorogenic extension Summary 19 Strike-slip, transpression and transtension 19.1 Strike-slip faults 19.2 Transfer faults 19.3 Transcurrent faults 19.4 Development and anatomy of strike-slip faults 19.5 Transpression and transtension 19.6 Strain partitioning Summary 20 Salt tectonics 20.1 Salt tectonics and halokinesis 20.2 Salt properties and rheology 20.3 Salt diapirism, salt geometry and the flow of salt 20.4 Rising diapirs: processes 20.5 Salt diapirism in the extensional regime 20.6 Diapirism in the contractional regime 20.7 Diapirism in strike-slip settings 20.8 Salt collapse by karstification 20.9 Salt décollements Summary 21 Balancing and restoration 21.1 Basic concepts and definitions 21.2 Restoration of geologic sections 21.3 Restoration in map view 21.4 Geomechanically based restoration 21.5 Restoration in three dimensions 21.6 Backstripping Summary 22 A glimpse of a larger picture 22.1 Synthesizing 22.2 Deformation phases 22.3 Progressive deformation 22.4 Metamorphic textures 22.5 Radiometric dating and P–T–t paths 22.6 Tectonics and sedimentation Summary Appendix A: More about the deformation matrix Appendix B: Spherical projections Glossary References Cover and chapter image captions Index