دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: M. Nadim Hassoun, Akthem Al-Manaseer سری: ISBN (شابک) : 9781119605119 ناشر: Wiley سال نشر: 2020 تعداد صفحات: 957 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 34 مگابایت
در صورت تبدیل فایل کتاب Structural Concrete: Theory and Design به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب بتن سازه: تئوری و طراحی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
مرجع پیشرو طراحی بتن سازه برای بیش از دو دهه - به روز شده تا آخرین کد ACI 318-19 را منعکس کند
منبعی برای دانشجویان مهندسی سازه و متخصصان بیش از بیست سال، این متن جدید به روز شده در مورد طراحی و تجزیه و تحلیل سازه بتن منعکس کننده جدیدترین کد ACI 318-19 است. با ارائه روشهای طراحی در کنار کدها و استانداردهای مرتبط، بر درک دانشآموز تأکید میکند. همچنین مثالهای متعددی (ارائهشده با استفاده از واحدهای SI و ضریب تبدیل US-SI) و مشکلات تمرینی برای هدایت دانشآموزان در تحلیل و طراحی هر نوع عضو سازه ارائه میکند.
جدید در ساختار بتن: تئوری و طراحی، ویرایش هفتممفاد کدی برای تقویت و برش عرضی در تیرهای عریض، آرماتور آویز و اندرکنش دو جهته برش یک طرفه است. این نسخه همچنین شامل آخرین اطلاعات در مورد مقاومت برشی دو طرفه، دیوارهای معمولی، بارهای لرزه ای، جزئیات و تجزیه و تحلیل آرماتورها و الزامات مصالح می باشد. این کتاب پیشینه تاریخی بتن سازه ای را پوشش می دهد. مزایا و معایب؛ کدها و تمرین؛ و فلسفه و مفاهیم طراحی. سپس به بحث در مورد خواص بتن مسلح می پردازد و با فصل هایی در مورد تجزیه و تحلیل خمشی و طراحی ادامه می یابد. انحراف و کنترل ترک خوردگی؛ طول توسعه میلگردهای تقویت کننده؛ طراحی با روش strut-and-tie; اسلب های یک طرفه؛ ستون های بارگذاری محوری؛ و موارد دیگر.
ساختار بتن: تئوری و طراحی، ویرایش هفتم متنی عالی برای مقطع کارشناسی و کارشناسی ارشد است. دانشجویان تحصیلات تکمیلی در رشته های مهندسی عمران و سازه. همچنین برای طراحان بتن، مهندسان سازه و مهندسان عمران متمرکز بر سازه ها مفید خواهد بود.
The leading structural concrete design reference for over two decades—updated to reflect the latest ACI 318-19 code
A go-to resource for structural engineering students and professionals for over twenty years, this newly updated text on concrete structural design and analysis reflects the most recent ACI 318-19 code. It emphasizes student comprehension by presenting design methods alongside relevant codes and standards. It also offers numerous examples (presented using SI units and US-SI conversion factors) and practice problems to guide students through the analysis and design of each type of structural member.
New to Structural Concrete: Theory and Design, Seventh Edition are code provisions for transverse reinforcement and shear in wide beams, hanger reinforcement, and bi-directional interaction of one-way shear. This edition also includes the latest information on two-way shear strength, ordinary walls, seismic loads, reinforcement detailing and analysis, and materials requirements. This book covers the historical background of structural concrete; advantages and disadvantages; codes and practice; and design philosophy and concepts. It then launches into a discussion of the properties of reinforced concrete, and continues with chapters on flexural analysis and design; deflection and control of cracking; development length of reinforcing bars; designing with the strut-and-tie method; one-way slabs; axially loaded columns; and more.
Structural Concrete: Theory and Design, Seventh Edition is an excellent text for undergraduate and graduate students in civil and structural engineering programs. It will also benefit concrete designers, structural engineers, and civil engineers focused on structures.
Cover Title Page Copyright Contents Preface Notation Conversion Factors Chapter 1 Introduction 1.1 Structural Concrete 1.2 Historical Background 1.3 Advantages and Disadvantages of Reinforced Concrete 1.4 Codes of Practice 1.5 Design Philosophy and Concepts 1.6 Units of Measurement 1.7 Loads 1.8 Safety Provisions 1.9 Structural Concrete Elements 1.10 Structural Concrete Design 1.11 Accuracy of Calculations 1.12 Concrete High‐Rise Buildings References Chapter 2 Properties of Reinforced Concrete 2.1 Factors Affecting Strength of Concrete 2.1.1 Water–Cement Ratio 2.1.2 Properties and Proportions of Concrete Constituents 2.1.3 Method of Mixing and Curing 2.1.4 Age of Concrete 2.1.5 Loading Conditions 2.1.6 Shape and Dimensions of Tested Specimen 2.2 Compressive Strength 2.3 Stress–Strain Curves of Concrete 2.4 Tensile Strength of Concrete 2.5 Flexural Strength (Modulus of Rupture) of Concrete 2.6 Shear Strength 2.7 Modulus of Elasticity of Concrete 2.8 Poisson's Ratio 2.9 Shear Modulus 2.10 Modular Ratio 2.11 Volume Changes of Concrete 2.11.1 Shrinkage 2.11.2 Expansion Due to Rise in Temperature 2.12 Creep 2.13 Models for Predicting Shrinkage and Creep of Concrete 2.13.1 ACI 209R‐92 Model 2.13.2 B3 Model 2.13.3 GL 2000 Model 2.13.4 CEB 90 Model 2.13.5 CEB MC 90‐99 Model 2.13.6 fib MC 2010 Model 2.13.7 The AASHTO Model 2.14 Unit Weight of Concrete 2.15 Fire Resistance 2.16 High‐Performance Concrete 2.17 Lightweight Concrete 2.18 Fibrous Concrete 2.19 Steel Reinforcement 2.19.1 Types of Steel Reinforcement 2.19.2 Grades and Strength 2.19.3 Stress–Strain Curves Summary References Problems Chapter 3 Flexural Analysis of Reinforced Concrete Beams 3.1 Introduction 3.2 Assumptions 3.3 Behavior of Simply Supported Reinforced Concrete Beam Loaded to Failure 3.4 Types of Flexural Failure and Strain Limits 3.4.1 Flexural Failure 3.4.2 Strain Limits for Tension and Tension‐Controlled Sections 3.5 Load Factors 3.6 Strength Reduction Factor ϕ 3.7 Significance of Analysis and Design Expressions 3.8 Equivalent Compressive Stress Distribution 3.9 Singly Reinforced Rectangular Section in Bending 3.9.1 Balanced Section 3.9.2 Upper Limit of Steel Percentage 3.10 Lower Limit or Minimum Percentage of Steel 3.11 Adequacy of Sections 3.12 Bundled Bars 3.13 Sections in the Transition Region (ϕ < 0.9) 3.14 Rectangular Sections with Compression Reinforcement 3.14.1 When Compression Steel Yields 3.14.2 When Compression Steel Does Not Yield 3.15 Analysis of T‐ and I‐Sections 3.15.1 Description 3.15.2 Effective Width 3.15.3 T‐Sections Behaving as Rectangular Sections 3.15.4 Analysis of a T‐Section 3.16 Dimensions of Isolated T‐Shaped Sections 3.17 Inverted L‐Shaped Sections 3.18 Sections of Other Shapes 3.19 Analysis of Sections Using Tables 3.20 Additional Examples 3.21 Examples Using SI Units Summary References Problems Chapter 4 Flexural Design of Reinforced Concrete Beams 4.1 Introduction 4.2 Rectangular Sections with Tension Reinforcement Only 4.3 Spacing of Reinforcement and Concrete Cover 4.3.1 Specifications 4.3.2 Minimum Width of Concrete Sections 4.3.3 Minimum Overall Depth of Concrete Sections 4.4 Rectangular Sections with Compression Reinforcement 4.4.1 Assuming One Row of Tension Bars 4.4.2 Assuming Two Rows of Tension Bars 4.5 Design of T‐Sections 4.6 Additional Examples 4.7 Examples Using SI Units Summary Problems Chapter 5 Shear and Diagonal Tension 5.1 Introduction 5.2 Shear Stresses in Concrete Beams 5.3 Behavior of Beams without Shear Reinforcement 5.4 Beam Shear Strength 5.5 Beams with Shear Reinforcement 5.6 ACI Code Shear Design Requirements 5.6.1 Critical Section for Nominal Shear Strength Calculation 5.6.2 Minimum Area of Shear Reinforcement 5.6.3 Maximum Shear Carried by Web Reinforcement Vs 5.6.4 Maximum Spacing of Stirrups 5.6.5 Yield Strength of Shear Reinforcement 5.6.6 Anchorage of Stirrups 5.6.7 Stirrups Adjacent to the Support 5.6.8 Effective Length of Bent Bars 5.6.9 Additional Transverse Shear Reinforcement 5.7 Design of Vertical Stirrups 5.8 Design Summary 5.9 Shear Force Due to Live Loads 5.10 Shear Stresses in Members of Variable Depth 5.11 Examples Using SI Units Summary References Problems Chapter 6 Deflection and Control of Cracking 6.1 Deflection of Structural Concrete Members 6.2 Instantaneous Deflection 6.2.1 Modulus of Elasticity 6.2.2 Modular Ratio 6.2.3 Cracking Moment 6.2.4 Moment of Inertia 6.2.5 Properties of Sections 6.3 Long‐Time Deflection 6.4 Allowable Deflection 6.5 Deflection Due to Combinations of Loads 6.6 Cracks in Flexural Members 6.6.1 Secondary Cracks 6.6.2 Main Cracks 6.7 ACI Code Requirements Summary References Problems Chapter 7 Development Length of Reinforcing Bars 7.1 Introduction 7.2 Development of Bond Stresses 7.2.1 Flexural Bond 7.2.2 Tests for Bond Efficiency 7.3 Development Length in Tension 7.3.1 Development Length, Id 7.3.2 ACI Code Factors for Calculating ld for Bars in Tension 7.3.3 Simplified Expressions for Id 7.4 Summary for Computation of Id in Tension 7.5 Development Length in Compression 7.6 Critical Sections in Flexural Members 7.7 Standard Hooks (ACI Code, Sections 25.4.3) 7.8 Splices of Reinforcement 7.8.1 General 7.8.2 Lap Splices in Tension, lst 7.8.3 Lap Splice in Compression, lsc 7.8.4 Lap Splice in Columns 7.9 Moment–Resistance Diagram (Bar Cutoff Points) Summary References Problems Chapter 8 Design of Deep Beams by the Strut‐and‐Tie Method 8.1 Introduction 8.2 B‐ and D‐Regions 8.3 Strut‐and‐Tie Model 8.4 ACI Design Procedure to Build a Strut‐and‐Tie Model 8.4.1 Model Requirements 8.4.2 Check for Shear Resistance 8.4.3 Design Steps According to ACI Section 23.2 8.4.4 Design Requirements According to ACI 8.5 Strut‐and‐Tie Method According to AASHTO LRFD 8.6 Deep Members 8.6.1 Analysis and Behavior of Deep Beams 8.6.2 Design of Deep Beams Using Strut‐and‐Tie Model References Problems Chapter 9 One‐Way Slabs 9.1 Types of Slabs 9.2 Design of One‐Way Solid Slabs 9.3 Design Limitations According to ACI Code 9.4 Temperature and Shrinkage Reinforcement 9.5 Reinforcement Details 9.6 Distribution of Loads from One‐Way Slabs to Supporting Beams 9.7 One‐Way Joist Floor System Summary References Problems Chapter 10 Axially Loaded Columns 10.1 Introduction 10.2 Types of Columns 10.3 Behavior of Axially Loaded Columns 10.4 ACI Code Limitations 10.5 Spiral Reinforcement 10.6 Design Equations 10.7 Axial Tension 10.8 Long Columns Summary References Problems Chapter 11 Members in Compression and Bending 11.1 Introduction 11.2 Design Assumptions for Columns 11.3 Load–Moment Interaction Diagram 11.4 Safety Provisions 11.5 Balanced Condition: Rectangular Sections 11.6 Column Sections under Eccentric Loading 11.7 Strength of Columns for Tension Failure 11.8 Strength of Columns for Compression Failure 11.8.1 Trial Solution 11.8.2 Numerical Analysis Solution 11.8.3 Approximate Solution 11.9 Interaction Diagram Example 11.10 Rectangular Columns with Side Bars 11.11 Load Capacity of Circular Columns 11.11.1 Balanced Condition 11.11.2 Strength of Circular Columns for Compression Failure 11.11.3 Strength of Circular Columns for Tension Failure 11.12 Analysis and Design of Columns Using Charts 11.13 Design of Columns under Eccentric Loading 11.13.1 Design of Columns for Compression Failure 11.13.2 Design of Columns for Tension Failure 11.14 Biaxial Bending 11.15 Circular Columns with Uniform Reinforcement under Biaxial Bending 11.16 Square and Rectangular Columns under Biaxial Bending 11.16.1 Bresler Reciprocal Method 11.16.2 Bresler Load Contour Method 11.17 Parme Load Contour Method 11.18 Equation of Failure Surface 11.19 SI Example Summary References Problems Chapter 12 Slender Columns 12.1 Introduction 12.2 Effective Column Length (Klu) 12.3 Effective Length Factor (K) 12.4 Member Stiffness (EI) 12.5 Limitation of the Slenderness Ratio (Klu/r) 12.5.1 Nonsway Frames 12.5.2 Sway Frames 12.6 Moment‐Magnifier Design Method 12.6.1 Introduction 12.6.2 Magnified Moments in Nonsway Frames 12.6.3 Magnified Moments in Sway Frames Summary References Problems Chapter 13 Footings 13.1 Introduction 13.2 Types of Footings 13.3 Distribution of Soil Pressure 13.4 Design Considerations 13.4.1 Size of Footings 13.4.2 One‐Way Shear (Beam Shear) (Vu1) 13.4.3 Two‐Way Shear (Punching Shear) (Vu2) 13.4.4 Flexural Strength and Footing Reinforcement 13.4.5 Bearing Capacity of Column at Base 13.4.6 Development Length of the Reinforcing Bars 13.4.7 Differential Settlement (Balanced Footing Design) 13.5 Plain Concrete Footings 13.6 Combined Footings 13.7 Footings under Eccentric Column Loads 13.8 Footings under Biaxial Moment 13.9 Slabs on Ground 13.10 Footings on Piles 13.11 SI Equations Summary References Problems Chapter 14 Retaining Walls 14.1 Introduction 14.2 Types of Retaining Walls 14.3 Forces on Retaining Walls 14.4 Active and Passive Soil Pressures 14.5 Effect of Surcharge 14.6 Friction on the Retaining Wall Base 14.7 Stability Against Overturning 14.8 Proportions of Retaining Walls 14.9 Design Requirements 14.10 Drainage 14.11 Basement Walls Summary References Problems Chapter 15 Design for Torsion 15.1 Introduction 15.2 Torsional Moments in Beams 15.3 Torsional Stresses 15.4 Torsional Moment in Rectangular Sections 15.5 Combined Shear and Torsion 15.6 Torsion Theories for Concrete Members 15.6.1 Skew Bending Theory 15.6.2 Space Truss Analogy 15.7 Torsional Strength of Plain Concrete Members 15.8 Torsion in Reinforced Concrete Members (ACI Code Procedure) 15.8.1 General 15.8.2 Torsional Geometric Parameters 15.8.3 Cracking Torsional Moment, Tcr 15.8.4 Equilibrium Torsion and Compatibility Torsion 15.8.5 Limitation of Torsional Moment Strength 15.8.6 Hollow Sections 15.8.7 Web Reinforcement 15.8.8 Minimum Torsional Reinforcement 15.9 Summary of ACI Code Procedures Summary References Problems Chgapter 16 Continuous Beams and Frames 16.1 Introduction 16.2 Maximum Moments in Continuous Beams 16.2.1 Basic Analysis 16.2.2 Loading Application 16.2.3 Maximum and Minimum Positive Moments within a Span 16.2.4 Maximum Negative Moments at Supports 16.2.5 Moments in Continuous Beams 16.3 Building Frames 16.4 Portal Frames 16.4.1 Two Hinged Ends 16.4.2 Two Fixed Ends 16.5 General Frames 16.6 Design of Frame Hinges 16.6.1 Mesnager Hinge 16.6.2 Considère Hinge 16.6.3 Lead Hinges 16.7 Introduction to Limit Design 16.7.1 General 16.7.2 Limit Design Concept 16.7.3 Plastic Hinge Concept 16.8 The Collapse Mechanism 16.9 Principles of Limit Design 16.10 Upper and Lower Bounds of Load Factors 16.11 Limit Analysis 16.12 Rotation of Plastic Hinges 16.12.1 Plastic Hinge Length 16.12.2 Curvature Distribution Factor 16.12.3 Ductility Index 16.12.4 Required Rotation 16.12.5 Rotation Capacity Provided 16.13 Summary of Limit Design Procedure 16.14 Moment Redistribution of Maximum Negative or Positive Moments in Continuous Beams Summary References Problems Chapter 17 Design of Two‐Way Slabs 17.1 Introduction 17.2 Types of Two‐Way Slabs 17.3 Economical Choice of Concrete Floor Systems 17.4 Design Concepts 17.5 Column and Middle Strips 17.6 Minimum Slab Thickness to Control Deflection 17.7 Shear Strength of Slabs 17.7.1 Two‐Way Slabs Supported on Beams 17.7.2 Two‐Way Slabs without Beams 17.7.3 Shear Reinforcement in Two‐Way Slabs without Beams 17.8 Analysis of Two‐Way Slabs by the Direct Design Method 17.8.1 Limitations 17.8.2 Total Factored Static Moment 17.8.3 Longitudinal Distribution of Moments in Slabs 17.8.4 Transverse Distribution of Moments 17.8.5 ACI Provisions for Effects of Pattern Loadings 17.8.6 Reinforcement Details 17.8.7 Modified Stiffness Method for End Spans 17.8.8 Summary of the Direct Design Method (DDM) 17.9 Design Moments in Columns 17.10 Transfer of Unbalanced Moments to Columns 17.10.1 Transfer of Moments 17.10.2 Concentration of Reinforcement Over the Column 17.10.3 Shear Stresses Due to Mv 17.11 Waffle Slabs 17.12 Equivalent Frame Method Summary References Problems Chapter 18 Stairs 18.1 Introduction 18.2 Types of Stairs 18.3 Examples Summary References Problems Chapter 19 Introduction to Prestressed Concrete 19.1 Prestressed Concrete 19.1.1 Principles of Prestressing 19.1.2 Partial Prestressing 19.1.3 Classification of Prestressed Concrete Flexural Members 19.2 Materials and Serviceability Requirements 19.2.1 Concrete 19.2.2 Prestressing Steel 19.2.3 Reinforcing Steel 19.3 Loss of Prestress 19.3.1 Lump‐Sum Losses 19.3.2 Loss Due to Elastic Shortening of Concrete 19.3.3 Loss Due to Shrinkage 19.3.4 Loss Due to Creep of Concrete 19.3.5 Loss Due to Relaxation of Steel 19.3.6 Loss Due to Friction 19.3.7 Loss Due to Anchor Set 19.4 Analysis of Flexural Members 19.4.1 Stresses Due to Loaded and Unloaded Conditions 19.4.2 Kern Limits 19.4.3 Limiting Values of Eccentricity 19.4.4 Limiting Values of the Prestressing Force at Transfer Fi 19.5 Design of Flexural Members 19.5.1 General 19.5.2 Rectangular Sections 19.5.3 Flanged Sections 19.5.4 Partial Prestressed Reinforcement 19.6 Cracking Moment 19.7 Deflection 19.8 Design for Shear 19.8.1 Basic Approach 19.8.2 Shear Strength Provided by Concrete (Prestressed) 19.8.3 Shear Reinforcement 19.8.4 Limitations 19.9 Preliminary Design of Prestressed Concrete Flexural Members 19.9.1 Shapes and Dimensions 19.9.2 Prestressing Force and Steel Area 19.10 End‐Block Stresses 19.10.1 Pretensioned Members 19.10.2 Posttensioned Members Summary References Problems Chapter 20 Seismic Design of Reinforced Concrete Structures 20.1 Introduction 20.2 Seismic Design Category 20.2.1 Determination of Risk Category and Site Class Defination 20.2.2 Determination of Design Spectral Response Acceleration Coefficients 20.2.3 Design Response Spectrum 20.2.4 Determination of Seismic Design Category (SDC) 20.2.5 Summary: Procedure for Calculation of Seismic Design Category (SDC) 20.3 Analysis Procedures 20.3.1 Equivalent Lateral Force Procedure 20.3.2 Summary: Equivalent Lateral Procedure 20.3.3 Simplified Analysis 20.3.4 Summary: Simplified Analysis Procedure 20.3.5 Design Story Shear 20.3.6 Torsional Effects 20.3.7 Overturning Moment 20.3.8 Lateral Deformation of the Structure 20.3.9 Summary: Lateral Deformation of the Structure 20.4 Load Combinations 20.4.1 Calculation of Seismic Load Effect, E 20.4.2 Redundancy Factor, ρ 20.4.3 Seismic Load Effect, Em 20.5 Special Requirements in Design of Structures Subjected to Earthquake Loads 20.5.1 Structures in the High Seismic Risk: Special Moment Frames 20.5.2 Structures at High Seismic Risk: Special Reinforced Concrete Structural Walls and Coupling Beams (ACI Code, Section 18.10) 20.5.3 Structures in the Areas of Moderate Seismic Risk: Intermediate Moment Frames (ACI Code, Section 18.4) References Problems Chapter 21 Beams Curved in Plan 21.1 Introduction 21.2 Uniformly Loaded Circular Beams 21.3 Semicircular Beam Fixed at End Supports 21.4 Fixed‐End Semicircular Beam under Uniform Loading 21.5 Circular Beam Subjected to Uniform Loading 21.6 Circular Beam Subjected to a Concentrated Load at Midspan 21.7 V‐Shape Beams Subjected to Uniform Loading 21.8 V‐Shape Beams Subjected to a Concentrated Load at the Centerline of the Beam Summary References Problems Chapter 22 Prestressed Concrete Bridge Design Based on AASHTO LRFD Bridge Design Specifications 22.1 Introduction 22.2 Typical Cross Sections 22.2.1 AASHTO Solid and Voided Slab Beams 22.2.2 AASHTO Box Beams 22.2.3 AASHTO I‐Beams 22.2.4 AASHTO‐PCI Bulb‐Tee 22.3 Design Philosophy of AASHTO Specifications 22.4 Load Factors and Combinations (AASHTO 3.4) 22.4.1 Load Modifier (AASHTO 1.3.2.1) 22.4.2 Load and Load Designation (AASHTO 3.3.2) 22.4.3 Load Combinations and Load Factors (AASHTO 3.4.1.1) 22.5 Gravity Loads 22.5.1 Permanent Loads (AASHTO 3.5) 22.5.2 Live Loads (AASHTO 3.6) 22.5.3 Static Analysis (AASHTO 4.6) 22.6 Design for Flexural and Axial Force Effects (AASHTO 5.6) 22.6.1 Flexural Members (AASHTO 5.6.3) 22.6.2 Flexural Resistance (AASHTO 5.6.3.1) 22.6.3 Limits for Reinforcement (AASHTO 5.6.3.3) 22.7 Design for Shear (AASHTO 5.8) 22.7.1 Shear Design Procedures (AASHTO 5.7.1) 22.7.2 Approach 1: MCFT (AASHTO 5.7.3.4.2) 22.7.3 Shear Stress on Concrete (AASHTO 5.7.2.8) 22.7.4 Longitudinal Strain (AASHTO 5.7.3.4.2) 22.7.5 Approach 2: Simplified MCFT (AASHTO 5.7.3.4.7) 22.7.6 Nominal Shear Resistance (AASHTO 5.7.3.3) 22.7.7 Regions Requiring Transverse Reinforcement (AASHTO 5.7.2.3) 22.7.8 Minimum Transverse Reinforcement (AASHTO 5.7.2.5) 22.7.9 Maximum Spacing of Transverse Reinforcement (AASHTO 5.7.2.6) 22.7.10 Minimum Longitudinal Reinforcement (AASHTO 5.7.3.5) 22.8 Loss of Prestress (AASHTO 5.9.3) 22.8.1 Total Loss of Prestress (AASHTO 5.9.3.1) 22.8.2 Instantaneous Losses (AASHTO 5.9.3.2) 22.8.3 Approximate Estimate of Time‐Dependent Losses (AASHTO 5.9.3.3) 22.8.4 Refined Estimate of Time‐Dependent Losses (AASHTO 5.9.3) 22.9 Deflections (AASHTO 5.6.3.5.2) References Chapter 23 Review Problems on Concrete Building Components Chapter 24 Design and Analysis Flowcharts Appendix A Design Tables (U.S. Customary Units) Appendix B Design Tables (SI Units) Appendix C Structural Aids Index EULA