ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Structural Concrete: Theory and Design

دانلود کتاب بتن سازه: تئوری و طراحی

Structural Concrete: Theory and Design

مشخصات کتاب

Structural Concrete: Theory and Design

ویرایش:  
نویسندگان: ,   
سری:  
ISBN (شابک) : 9781119605119 
ناشر: Wiley 
سال نشر: 2020 
تعداد صفحات: 957 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 34 مگابایت 

قیمت کتاب (تومان) : 40,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 11


در صورت تبدیل فایل کتاب Structural Concrete: Theory and Design به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب بتن سازه: تئوری و طراحی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب بتن سازه: تئوری و طراحی



مرجع پیشرو طراحی بتن سازه برای بیش از دو دهه - به روز شده تا آخرین کد ACI 318-19 را منعکس کند

منبعی برای دانشجویان مهندسی سازه و متخصصان بیش از بیست سال، این متن جدید به روز شده در مورد طراحی و تجزیه و تحلیل سازه بتن منعکس کننده جدیدترین کد ACI 318-19 است. با ارائه روش‌های طراحی در کنار کدها و استانداردهای مرتبط، بر درک دانش‌آموز تأکید می‌کند. همچنین مثال‌های متعددی (ارائه‌شده با استفاده از واحدهای SI و ضریب تبدیل US-SI) و مشکلات تمرینی برای هدایت دانش‌آموزان در تحلیل و طراحی هر نوع عضو سازه ارائه می‌کند.

جدید در ساختار بتن: تئوری و طراحی، ویرایش هفتممفاد کدی برای تقویت و برش عرضی در تیرهای عریض، آرماتور آویز و اندرکنش دو جهته برش یک طرفه است. این نسخه همچنین شامل آخرین اطلاعات در مورد مقاومت برشی دو طرفه، دیوارهای معمولی، بارهای لرزه ای، جزئیات و تجزیه و تحلیل آرماتورها و الزامات مصالح می باشد. این کتاب پیشینه تاریخی بتن سازه ای را پوشش می دهد. مزایا و معایب؛ کدها و تمرین؛ و فلسفه و مفاهیم طراحی. سپس به بحث در مورد خواص بتن مسلح می پردازد و با فصل هایی در مورد تجزیه و تحلیل خمشی و طراحی ادامه می یابد. انحراف و کنترل ترک خوردگی؛ طول توسعه میلگردهای تقویت کننده؛ طراحی با روش strut-and-tie; اسلب های یک طرفه؛ ستون های بارگذاری محوری؛ و موارد دیگر.

  • به روز شد تا با کد جدید ACI 318-19 مطابق با مقررات کد جدید شامل: تقویت عرضی و برش در تیرهای عریض، تقویت آویز، تعامل دو جهته یک طرفه برش و ارجاع به گواهینامه های ACI
  • شامل ده ها نمونه کار شده است که تحلیل و طراحی اعضای سازه ای را توضیح می دهد
  • اطلاعات به روز شده در مورد مقاومت برشی دو طرفه، بارهای لرزه ای، الزامات مصالح را ارائه می دهد. و بیشتر
  • با توضیح الزامات و محدودیت‌های کد، توانایی طراحی دانش‌آموزان را بهبود می‌بخشد 
  • نمونه‌هایی را در واحدهای SI در هر فصل و همچنین عوامل تبدیل از واحدهای مرسوم به SI ارائه می‌کند
  • از طریق وب سایت همراه کتاب به مربیان امکان دسترسی به راهنمای راه حل ها را می دهد

ساختار بتن: تئوری و طراحی، ویرایش هفتم متنی عالی برای مقطع کارشناسی و کارشناسی ارشد است. دانشجویان تحصیلات تکمیلی در رشته های مهندسی عمران و سازه. همچنین برای طراحان بتن، مهندسان سازه و مهندسان عمران متمرکز بر سازه ها مفید خواهد بود.


توضیحاتی درمورد کتاب به خارجی

The leading structural concrete design reference for over two decades—updated to reflect the latest ACI 318-19 code

A go-to resource for structural engineering students and professionals for over twenty years, this newly updated text on concrete structural design and analysis reflects the most recent ACI 318-19 code. It emphasizes student comprehension by presenting design methods alongside relevant codes and standards. It also offers numerous examples (presented using SI units and US-SI conversion factors) and practice problems to guide students through the analysis and design of each type of structural member.

New to Structural Concrete: Theory and Design, Seventh Edition are code provisions for transverse reinforcement and shear in wide beams, hanger reinforcement, and bi-directional interaction of one-way shear. This edition also includes the latest information on two-way shear strength, ordinary walls, seismic loads, reinforcement detailing and analysis, and materials requirements. This book covers the historical background of structural concrete; advantages and disadvantages; codes and practice; and design philosophy and concepts. It then launches into a discussion of the properties of reinforced concrete, and continues with chapters on flexural analysis and design; deflection and control of cracking; development length of reinforcing bars; designing with the strut-and-tie method; one-way slabs; axially loaded columns; and more.

  • Updated to align with the new ACI 318-19 code with new code provisions to include: transverse reinforcement and shear in wide beams, hanger reinforcement, bi-directional interaction of one-way shear, and reference to ACI certifications
  • Includes dozens of worked examples that explain the analysis and design of structural members
  • Offers updated information on two-way shear strength, seismic loads, materials requirements, and more
  • Improves the design ability of students by explaining code requirements and restrictions 
  • Provides examples in SI units in every chapter as well as conversion factors from customary units to SI
  • Offers instructors access to a solutions manual via the book's companion website

Structural Concrete: Theory and Design, Seventh Edition is an excellent text for undergraduate and graduate students in civil and structural engineering programs. It will also benefit concrete designers, structural engineers, and civil engineers focused on structures.



فهرست مطالب

Cover
Title Page
Copyright
Contents
Preface
Notation
Conversion Factors
Chapter 1 Introduction
	1.1 Structural Concrete
	1.2 Historical Background
	1.3 Advantages and Disadvantages of Reinforced Concrete
	1.4 Codes of Practice
	1.5 Design Philosophy and Concepts
	1.6 Units of Measurement
	1.7 Loads
	1.8 Safety Provisions
	1.9 Structural Concrete Elements
	1.10 Structural Concrete Design
	1.11 Accuracy of Calculations
	1.12 Concrete High‐Rise Buildings
	References
Chapter 2 Properties of Reinforced Concrete
	2.1 Factors Affecting Strength of Concrete
		2.1.1 Water–Cement Ratio
		2.1.2 Properties and Proportions of Concrete Constituents
		2.1.3 Method of Mixing and Curing
		2.1.4 Age of Concrete
		2.1.5 Loading Conditions
		2.1.6 Shape and Dimensions of Tested Specimen
	2.2 Compressive Strength
	2.3 Stress–Strain Curves of Concrete
	2.4 Tensile Strength of Concrete
	2.5 Flexural Strength (Modulus of Rupture) of Concrete
	2.6 Shear Strength
	2.7 Modulus of Elasticity of Concrete
	2.8 Poisson's Ratio
	2.9 Shear Modulus
	2.10 Modular Ratio
	2.11 Volume Changes of Concrete
		2.11.1 Shrinkage
		2.11.2 Expansion Due to Rise in Temperature
	2.12 Creep
	2.13 Models for Predicting Shrinkage and Creep of Concrete
		2.13.1 ACI 209R‐92 Model
		2.13.2 B3 Model
		2.13.3 GL 2000 Model
		2.13.4 CEB 90 Model
		2.13.5 CEB MC 90‐99 Model
		2.13.6 fib MC 2010 Model
		2.13.7 The AASHTO Model
	2.14 Unit Weight of Concrete
	2.15 Fire Resistance
	2.16 High‐Performance Concrete
	2.17 Lightweight Concrete
	2.18 Fibrous Concrete
	2.19 Steel Reinforcement
		2.19.1 Types of Steel Reinforcement
		2.19.2 Grades and Strength
		2.19.3 Stress–Strain Curves
	Summary
	References
	Problems
Chapter 3 Flexural Analysis of Reinforced Concrete Beams
	3.1 Introduction
	3.2 Assumptions
	3.3 Behavior of Simply Supported Reinforced Concrete Beam Loaded to Failure
	3.4 Types of Flexural Failure and Strain Limits
		3.4.1 Flexural Failure
		3.4.2 Strain Limits for Tension and Tension‐Controlled Sections
	3.5 Load Factors
	3.6 Strength Reduction Factor ϕ
	3.7 Significance of Analysis and Design Expressions
	3.8 Equivalent Compressive Stress Distribution
	3.9 Singly Reinforced Rectangular Section in Bending
		3.9.1 Balanced Section
		3.9.2 Upper Limit of Steel Percentage
	3.10 Lower Limit or Minimum Percentage of Steel
	3.11 Adequacy of Sections
	3.12 Bundled Bars
	3.13 Sections in the Transition Region (ϕ < 0.9)
	3.14 Rectangular Sections with Compression Reinforcement
		3.14.1 When Compression Steel Yields
		3.14.2 When Compression Steel Does Not Yield
	3.15 Analysis of T‐ and I‐Sections
		3.15.1 Description
		3.15.2 Effective Width
		3.15.3 T‐Sections Behaving as Rectangular Sections
		3.15.4 Analysis of a T‐Section
	3.16 Dimensions of Isolated T‐Shaped Sections
	3.17 Inverted L‐Shaped Sections
	3.18 Sections of Other Shapes
	3.19 Analysis of Sections Using Tables
	3.20 Additional Examples
	3.21 Examples Using SI Units
	Summary
	References
	Problems
Chapter 4 Flexural Design of Reinforced Concrete Beams
	4.1 Introduction
	4.2 Rectangular Sections with Tension Reinforcement Only
	4.3 Spacing of Reinforcement and Concrete Cover
		4.3.1 Specifications
		4.3.2 Minimum Width of Concrete Sections
		4.3.3 Minimum Overall Depth of Concrete Sections
	4.4 Rectangular Sections with Compression Reinforcement
		4.4.1 Assuming One Row of Tension Bars
		4.4.2 Assuming Two Rows of Tension Bars
	4.5 Design of T‐Sections
	4.6 Additional Examples
	4.7 Examples Using SI Units
	Summary
	Problems
Chapter 5 Shear and Diagonal Tension
	5.1 Introduction
	5.2 Shear Stresses in Concrete Beams
	5.3 Behavior of Beams without Shear Reinforcement
	5.4 Beam Shear Strength
	5.5 Beams with Shear Reinforcement
	5.6 ACI Code Shear Design Requirements
		5.6.1 Critical Section for Nominal Shear Strength Calculation
		5.6.2 Minimum Area of Shear Reinforcement
		5.6.3 Maximum Shear Carried by Web Reinforcement Vs
		5.6.4 Maximum Spacing of Stirrups
		5.6.5 Yield Strength of Shear Reinforcement
		5.6.6 Anchorage of Stirrups
		5.6.7 Stirrups Adjacent to the Support
		5.6.8 Effective Length of Bent Bars
		5.6.9 Additional Transverse Shear Reinforcement
	5.7 Design of Vertical Stirrups
	5.8 Design Summary
	5.9 Shear Force Due to Live Loads
	5.10 Shear Stresses in Members of Variable Depth
	5.11 Examples Using SI Units
	Summary
	References
	Problems
Chapter 6 Deflection and Control of Cracking
	6.1 Deflection of Structural Concrete Members
	6.2 Instantaneous Deflection
		6.2.1 Modulus of Elasticity
		6.2.2 Modular Ratio
		6.2.3 Cracking Moment
		6.2.4 Moment of Inertia
		6.2.5 Properties of Sections
	6.3 Long‐Time Deflection
	6.4 Allowable Deflection
	6.5 Deflection Due to Combinations of Loads
	6.6 Cracks in Flexural Members
		6.6.1 Secondary Cracks
		6.6.2 Main Cracks
	6.7 ACI Code Requirements
	Summary
	References
	Problems
Chapter 7 Development Length of Reinforcing Bars
	7.1 Introduction
	7.2 Development of Bond Stresses
		7.2.1 Flexural Bond
		7.2.2 Tests for Bond Efficiency
	7.3 Development Length in Tension
		7.3.1 Development Length, Id
		7.3.2 ACI Code Factors for Calculating ld for Bars in Tension
		7.3.3 Simplified Expressions for Id
	7.4 Summary for Computation of Id in Tension
	7.5 Development Length in Compression
	7.6 Critical Sections in Flexural Members
	7.7 Standard Hooks (ACI Code, Sections 25.4.3)
	7.8 Splices of Reinforcement
		7.8.1 General
		7.8.2 Lap Splices in Tension, lst
		7.8.3 Lap Splice in Compression, lsc
		7.8.4 Lap Splice in Columns
	7.9 Moment–Resistance Diagram (Bar Cutoff Points)
	Summary
	References
	Problems
Chapter 8 Design of Deep Beams by the Strut‐and‐Tie Method
	8.1 Introduction
	8.2 B‐ and D‐Regions
	8.3 Strut‐and‐Tie Model
	8.4 ACI Design Procedure to Build a Strut‐and‐Tie Model
		8.4.1 Model Requirements
		8.4.2 Check for Shear Resistance
		8.4.3 Design Steps According to ACI Section 23.2
		8.4.4 Design Requirements According to ACI
	8.5 Strut‐and‐Tie Method According to AASHTO LRFD
	8.6 Deep Members
		8.6.1 Analysis and Behavior of Deep Beams
		8.6.2 Design of Deep Beams Using Strut‐and‐Tie Model
	References
	Problems
Chapter 9 One‐Way Slabs
	9.1 Types of Slabs
	9.2 Design of One‐Way Solid Slabs
	9.3 Design Limitations According to ACI Code
	9.4 Temperature and Shrinkage Reinforcement
	9.5 Reinforcement Details
	9.6 Distribution of Loads from One‐Way Slabs to Supporting Beams
	9.7 One‐Way Joist Floor System
	Summary
	References
	Problems
Chapter 10 Axially Loaded Columns
	10.1 Introduction
	10.2 Types of Columns
	10.3 Behavior of Axially Loaded Columns
	10.4 ACI Code Limitations
	10.5 Spiral Reinforcement
	10.6 Design Equations
	10.7 Axial Tension
	10.8 Long Columns
	Summary
	References
	Problems
Chapter 11 Members in Compression and Bending
	11.1 Introduction
	11.2 Design Assumptions for Columns
	11.3 Load–Moment Interaction Diagram
	11.4 Safety Provisions
	11.5 Balanced Condition: Rectangular Sections
	11.6 Column Sections under Eccentric Loading
	11.7 Strength of Columns for Tension Failure
	11.8 Strength of Columns for Compression Failure
		11.8.1 Trial Solution
		11.8.2 Numerical Analysis Solution
		11.8.3 Approximate Solution
	11.9 Interaction Diagram Example
	11.10 Rectangular Columns with Side Bars
	11.11 Load Capacity of Circular Columns
		11.11.1 Balanced Condition
		11.11.2 Strength of Circular Columns for Compression Failure
		11.11.3 Strength of Circular Columns for Tension Failure
	11.12 Analysis and Design of Columns Using Charts
	11.13 Design of Columns under Eccentric Loading
		11.13.1 Design of Columns for Compression Failure
		11.13.2 Design of Columns for Tension Failure
	11.14 Biaxial Bending
	11.15 Circular Columns with Uniform Reinforcement under Biaxial Bending
	11.16 Square and Rectangular Columns under Biaxial Bending
		11.16.1 Bresler Reciprocal Method
		11.16.2 Bresler Load Contour Method
	11.17 Parme Load Contour Method
	11.18 Equation of Failure Surface
	11.19 SI Example
	Summary
	References
	Problems
Chapter 12 Slender Columns
	12.1 Introduction
	12.2 Effective Column Length (Klu)
	12.3 Effective Length Factor (K)
	12.4 Member Stiffness (EI)
	12.5 Limitation of the Slenderness Ratio (Klu/r)
		12.5.1 Nonsway Frames
		12.5.2 Sway Frames
	12.6 Moment‐Magnifier Design Method
		12.6.1 Introduction
		12.6.2 Magnified Moments in Nonsway Frames
		12.6.3 Magnified Moments in Sway Frames
	Summary
	References
	Problems
Chapter 13 Footings
	13.1 Introduction
	13.2 Types of Footings
	13.3 Distribution of Soil Pressure
	13.4 Design Considerations
		13.4.1 Size of Footings
		13.4.2 One‐Way Shear (Beam Shear) (Vu1)
		13.4.3 Two‐Way Shear (Punching Shear) (Vu2)
		13.4.4 Flexural Strength and Footing Reinforcement
		13.4.5 Bearing Capacity of Column at Base
		13.4.6 Development Length of the Reinforcing Bars
		13.4.7 Differential Settlement (Balanced Footing Design)
	13.5 Plain Concrete Footings
	13.6 Combined Footings
	13.7 Footings under Eccentric Column Loads
	13.8 Footings under Biaxial Moment
	13.9 Slabs on Ground
	13.10 Footings on Piles
	13.11 SI Equations
	Summary
	References
	Problems
Chapter 14 Retaining Walls
	14.1 Introduction
	14.2 Types of Retaining Walls
	14.3 Forces on Retaining Walls
	14.4 Active and Passive Soil Pressures
	14.5 Effect of Surcharge
	14.6 Friction on the Retaining Wall Base
	14.7 Stability Against Overturning
	14.8 Proportions of Retaining Walls
	14.9 Design Requirements
	14.10 Drainage
	14.11 Basement Walls
	Summary
	References
	Problems
Chapter 15 Design for Torsion
	15.1 Introduction
	15.2 Torsional Moments in Beams
	15.3 Torsional Stresses
	15.4 Torsional Moment in Rectangular Sections
	15.5 Combined Shear and Torsion
	15.6 Torsion Theories for Concrete Members
		15.6.1 Skew Bending Theory
		15.6.2 Space Truss Analogy
	15.7 Torsional Strength of Plain Concrete Members
	15.8 Torsion in Reinforced Concrete Members (ACI Code Procedure)
		15.8.1 General
		15.8.2 Torsional Geometric Parameters
		15.8.3 Cracking Torsional Moment, Tcr
		15.8.4 Equilibrium Torsion and Compatibility Torsion
		15.8.5 Limitation of Torsional Moment Strength
		15.8.6 Hollow Sections
		15.8.7 Web Reinforcement
		15.8.8 Minimum Torsional Reinforcement
	15.9 Summary of ACI Code Procedures
	Summary
	References
	Problems
Chgapter 16 Continuous Beams and Frames
	16.1 Introduction
	16.2 Maximum Moments in Continuous Beams
		16.2.1 Basic Analysis
		16.2.2 Loading Application
		16.2.3 Maximum and Minimum Positive Moments within a Span
		16.2.4 Maximum Negative Moments at Supports
		16.2.5 Moments in Continuous Beams
	16.3 Building Frames
	16.4 Portal Frames
		16.4.1 Two Hinged Ends
		16.4.2 Two Fixed Ends
	16.5 General Frames
	16.6 Design of Frame Hinges
		16.6.1 Mesnager Hinge
		16.6.2 Considère Hinge
		16.6.3 Lead Hinges
	16.7 Introduction to Limit Design
		16.7.1 General
		16.7.2 Limit Design Concept
		16.7.3 Plastic Hinge Concept
	16.8 The Collapse Mechanism
	16.9 Principles of Limit Design
	16.10 Upper and Lower Bounds of Load Factors
	16.11 Limit Analysis
	16.12 Rotation of Plastic Hinges
		16.12.1 Plastic Hinge Length
		16.12.2 Curvature Distribution Factor
		16.12.3 Ductility Index
		16.12.4 Required Rotation
		16.12.5 Rotation Capacity Provided
	16.13 Summary of Limit Design Procedure
	16.14 Moment Redistribution of Maximum Negative or Positive Moments in Continuous Beams
	Summary
	References
	Problems
Chapter 17 Design of Two‐Way Slabs
	17.1 Introduction
	17.2 Types of Two‐Way Slabs
	17.3 Economical Choice of Concrete Floor Systems
	17.4 Design Concepts
	17.5 Column and Middle Strips
	17.6 Minimum Slab Thickness to Control Deflection
	17.7 Shear Strength of Slabs
		17.7.1 Two‐Way Slabs Supported on Beams
		17.7.2 Two‐Way Slabs without Beams
		17.7.3 Shear Reinforcement in Two‐Way Slabs without Beams
	17.8 Analysis of Two‐Way Slabs by the Direct Design Method
		17.8.1 Limitations
		17.8.2 Total Factored Static Moment
		17.8.3 Longitudinal Distribution of Moments in Slabs
		17.8.4 Transverse Distribution of Moments
		17.8.5 ACI Provisions for Effects of Pattern Loadings
		17.8.6 Reinforcement Details
		17.8.7 Modified Stiffness Method for End Spans
		17.8.8 Summary of the Direct Design Method (DDM)
	17.9 Design Moments in Columns
	17.10 Transfer of Unbalanced Moments to Columns
		17.10.1 Transfer of Moments
		17.10.2 Concentration of Reinforcement Over the Column
		17.10.3 Shear Stresses Due to Mv
	17.11 Waffle Slabs
	17.12 Equivalent Frame Method
	Summary
	References
	Problems
Chapter 18 Stairs
	18.1 Introduction
	18.2 Types of Stairs
	18.3 Examples
	Summary
	References
	Problems
Chapter 19 Introduction to Prestressed Concrete
	19.1 Prestressed Concrete
		19.1.1 Principles of Prestressing
		19.1.2 Partial Prestressing
		19.1.3 Classification of Prestressed Concrete Flexural Members
	19.2 Materials and Serviceability Requirements
		19.2.1 Concrete
		19.2.2 Prestressing Steel
		19.2.3 Reinforcing Steel
	19.3 Loss of Prestress
		19.3.1 Lump‐Sum Losses
		19.3.2 Loss Due to Elastic Shortening of Concrete
		19.3.3 Loss Due to Shrinkage
		19.3.4 Loss Due to Creep of Concrete
		19.3.5 Loss Due to Relaxation of Steel
		19.3.6 Loss Due to Friction
		19.3.7 Loss Due to Anchor Set
	19.4 Analysis of Flexural Members
		19.4.1 Stresses Due to Loaded and Unloaded Conditions
		19.4.2 Kern Limits
		19.4.3 Limiting Values of Eccentricity
		19.4.4 Limiting Values of the Prestressing Force at Transfer Fi
	19.5 Design of Flexural Members
		19.5.1 General
		19.5.2 Rectangular Sections
		19.5.3 Flanged Sections
		19.5.4 Partial Prestressed Reinforcement
	19.6 Cracking Moment
	19.7 Deflection
	19.8 Design for Shear
		19.8.1 Basic Approach
		19.8.2 Shear Strength Provided by Concrete (Prestressed)
		19.8.3 Shear Reinforcement
		19.8.4 Limitations
	19.9 Preliminary Design of Prestressed Concrete Flexural Members
		19.9.1 Shapes and Dimensions
		19.9.2 Prestressing Force and Steel Area
	19.10 End‐Block Stresses
		19.10.1 Pretensioned Members
		19.10.2 Posttensioned Members
	Summary
	References
	Problems
Chapter 20 Seismic Design of Reinforced Concrete Structures
	20.1 Introduction
	20.2 Seismic Design Category
		20.2.1 Determination of Risk Category and Site Class Defination
		20.2.2 Determination of Design Spectral Response Acceleration Coefficients
		20.2.3 Design Response Spectrum
		20.2.4 Determination of Seismic Design Category (SDC)
		20.2.5 Summary: Procedure for Calculation of Seismic Design Category (SDC)
	20.3 Analysis Procedures
		20.3.1 Equivalent Lateral Force Procedure
		20.3.2 Summary: Equivalent Lateral Procedure
		20.3.3 Simplified Analysis
		20.3.4 Summary: Simplified Analysis Procedure
		20.3.5 Design Story Shear
		20.3.6 Torsional Effects
		20.3.7 Overturning Moment
		20.3.8 Lateral Deformation of the Structure
		20.3.9 Summary: Lateral Deformation of the Structure
	20.4 Load Combinations
		20.4.1 Calculation of Seismic Load Effect, E
		20.4.2 Redundancy Factor, ρ
		20.4.3 Seismic Load Effect, Em
	20.5 Special Requirements in Design of Structures Subjected to Earthquake Loads
		20.5.1 Structures in the High Seismic Risk: Special Moment Frames
		20.5.2 Structures at High Seismic Risk: Special Reinforced Concrete Structural Walls and Coupling Beams (ACI Code, Section 18.10)
		20.5.3 Structures in the Areas of Moderate Seismic Risk: Intermediate Moment Frames (ACI Code, Section 18.4)
	References
	Problems
Chapter 21 Beams Curved in Plan
	21.1 Introduction
	21.2 Uniformly Loaded Circular Beams
	21.3 Semicircular Beam Fixed at End Supports
	21.4 Fixed‐End Semicircular Beam under Uniform Loading
	21.5 Circular Beam Subjected to Uniform Loading
	21.6 Circular Beam Subjected to a Concentrated Load at Midspan
	21.7 V‐Shape Beams Subjected to Uniform Loading
	21.8 V‐Shape Beams Subjected to a Concentrated Load at the Centerline of the Beam
	Summary
	References
	Problems
Chapter 22 Prestressed Concrete Bridge Design Based on AASHTO LRFD Bridge Design Specifications
	22.1 Introduction
	22.2 Typical Cross Sections
		22.2.1 AASHTO Solid and Voided Slab Beams
		22.2.2 AASHTO Box Beams
		22.2.3 AASHTO I‐Beams
		22.2.4 AASHTO‐PCI Bulb‐Tee
	22.3 Design Philosophy of AASHTO Specifications
	22.4 Load Factors and Combinations (AASHTO 3.4)
		22.4.1 Load Modifier (AASHTO 1.3.2.1)
		22.4.2 Load and Load Designation (AASHTO 3.3.2)
		22.4.3 Load Combinations and Load Factors (AASHTO 3.4.1.1)
	22.5 Gravity Loads
		22.5.1 Permanent Loads (AASHTO 3.5)
		22.5.2 Live Loads (AASHTO 3.6)
		22.5.3 Static Analysis (AASHTO 4.6)
	22.6 Design for Flexural and Axial Force Effects (AASHTO 5.6)
		22.6.1 Flexural Members (AASHTO 5.6.3)
		22.6.2 Flexural Resistance (AASHTO 5.6.3.1)
		22.6.3 Limits for Reinforcement (AASHTO 5.6.3.3)
	22.7 Design for Shear (AASHTO 5.8)
		22.7.1 Shear Design Procedures (AASHTO 5.7.1)
		22.7.2 Approach 1: MCFT (AASHTO 5.7.3.4.2)
		22.7.3 Shear Stress on Concrete (AASHTO 5.7.2.8)
		22.7.4 Longitudinal Strain (AASHTO 5.7.3.4.2)
		22.7.5 Approach 2: Simplified MCFT (AASHTO 5.7.3.4.7)
		22.7.6 Nominal Shear Resistance (AASHTO 5.7.3.3)
		22.7.7 Regions Requiring Transverse Reinforcement (AASHTO 5.7.2.3)
		22.7.8 Minimum Transverse Reinforcement (AASHTO 5.7.2.5)
		22.7.9 Maximum Spacing of Transverse Reinforcement (AASHTO 5.7.2.6)
		22.7.10 Minimum Longitudinal Reinforcement (AASHTO 5.7.3.5)
	22.8 Loss of Prestress (AASHTO 5.9.3)
		22.8.1 Total Loss of Prestress (AASHTO 5.9.3.1)
		22.8.2 Instantaneous Losses (AASHTO 5.9.3.2)
		22.8.3 Approximate Estimate of Time‐Dependent Losses (AASHTO 5.9.3.3)
		22.8.4 Refined Estimate of Time‐Dependent Losses (AASHTO 5.9.3)
	22.9 Deflections (AASHTO 5.6.3.5.2)
	References
Chapter 23 Review Problems on Concrete Building Components
Chapter 24 Design and Analysis Flowcharts
Appendix A Design Tables (U.S. Customary Units)
Appendix B Design Tables (SI Units)
Appendix C Structural Aids
Index
EULA




نظرات کاربران