دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Anatoliy Malyarenko, Ying Ni, Milica Rančić, Sergei Silvestrov سری: Springer Proceedings in Mathematics & Statistics, 408 ISBN (شابک) : 303117819X, 9783031178191 ناشر: Springer سال نشر: 2023 تعداد صفحات: 906 [907] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 15 Mb
در صورت تبدیل فایل کتاب Stochastic Processes, Statistical Methods, and Engineering Mathematics: SPAS 2019, Västerås, Sweden, September 30–October 2 به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب فرآیندهای تصادفی، روشهای آماری، و ریاضیات مهندسی: SPAS 2019، وستراس، سوئد، 30 سپتامبر تا 2 اکتبر نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
هدف کنفرانس 2019 در مورد فرآیندهای تصادفی و ساختارهای جبری که در SPAS2019، وستروس، سوئد، از 30 سپتامبر تا 2 اکتبر 2019 برگزار شد، به نمایش گذاشتن مرزهای تحقیق در چندین حوزه مهم ریاضیات، آمار ریاضی و کاربردهای آن بود. این کنفرانس حول محور موضوعات زیر برگزار شد: 1. فرآیندهای تصادفی و روش های آماری نوین، 2. ریاضیات مهندسی، 3. ساختارهای جبری و کاربردهای آنها این کنفرانس گروهی منتخب از دانشمندان، محققان و متخصصان صنعت را گرد هم آورد که به طور فعال در نظریه و کاربردهای ساختارها، روشها و مدلهای تصادفی و جبری مشارکت دارند. این کنفرانس فرصتی را برای محققان در مراحل اولیه فراهم کرد تا از رهبران این حوزه بیاموزند، تحقیقات خود را ارائه دهند و همچنین ارتباطات تحقیقاتی ارزشمندی را برای شروع همکاری در سوئد و خارج از کشور ایجاد کنند. روشهای جدید قیمتگذاری مشتقات مالی پیچیده، قضایای حدی برای فرآیندهای تصادفی، روشهای پیشرفته برای تجزیه و تحلیل آماری دادههای مالی و روشهای محاسباتی مدرن در حوزههای مختلف علوم کاربردی را میتوان در این کتاب یافت. دلیل اصلی علاقه فزاینده به این سؤالات از این واقعیت ناشی می شود که ما در یک محیط بسیار سریع در حال تغییر و چالش برانگیز زندگی می کنیم. این امر مستلزم معرفی سریع روشهای جدید از حوزههای مختلف علوم کاربردی است. مفاهیم پیشرفته در کتاب به صورت ساده و با کمک جداول و شکل ها به تصویر کشیده شده است. بسیاری از مقالات مستقل هستند، و بنابراین برای مطالعه خود ایده آل مناسب هستند. راهحلهایی برای مسائل پیچیده واقع در تقاطع حوزههای مختلف نظری و کاربردی علوم طبیعی در این مقالات ارائه شدهاند.
The goal of the 2019 conference on Stochastic Processes and Algebraic Structures held in SPAS2019, Västerås, Sweden, from September 30th to October 2nd 2019, was to showcase the frontiers of research in several important areas of mathematics, mathematical statistics, and its applications. The conference was organized around the following topics 1. Stochastic processes and modern statistical methods,2. Engineering mathematics,3. Algebraic structures and their applications. The conference brought together a select group of scientists, researchers, and practitioners from the industry who are actively contributing to the theory and applications of stochastic, and algebraic structures, methods, and models. The conference provided early stage researchers with the opportunity to learn from leaders in the field, to present their research, as well as to establish valuable research contacts in order to initiate collaborations in Sweden and abroad. New methods for pricing sophisticated financial derivatives, limit theorems for stochastic processes, advanced methods for statistical analysis of financial data, and modern computational methods in various areas of applied science can be found in this book. The principal reason for the growing interest in these questions comes from the fact that we are living in an extremely rapidly changing and challenging environment. This requires the quick introduction of new methods, coming from different areas of applied science. Advanced concepts in the book are illustrated in simple form with the help of tables and figures. Most of the papers are self-contained, and thus ideally suitable for self-study. Solutions to sophisticated problems located at the intersection of various theoretical and applied areas of the natural sciences are presented in these proceedings.
Preface Contents Contributors Part I Stochastic Processes and Analysis 1 An Improved Asymptotics of Implied Volatility in the Gatheral Model 1.1 Introduction 1.2 Previous Results 1.3 The Expansion of Order 3 1.4 A Sketch of a Proof 1.4.1 Preliminaries 1.4.2 Order 3 1.5 Conclusions and Future Work References 2 Ruin Probability for Merged Risk Processes with Correlated Arrivals 2.1 Introduction 2.2 The Compound Poisson Model with Phase Type Claims 2.2.1 Phase Type Distribution 2.2.2 Ruin Probability for Phase Type Claims 2.3 Correlated Poisson Arrivals with Exponential Claims 2.3.1 Transition to a Single Poisson Compound Process 2.3.2 Numerical Example 2.3.3 An Auxiliary Result 2.4 Correlated Poisson Arrivals with Phase Type Claims 2.4.1 The Phase Type Distribution of Claims of the Merged Process 2.4.2 Example 2.4.3 Ruin Probability in Case of Phase Type Claims 2.5 Conclusion References 3 Method Development for Emergent Properties in Stage-Structured Population Models with Stochastic Resource Growth 3.1 Introduction 3.2 The Deterministic Stage Model 3.3 Stochastic Stage Model 3.4 The Recovery Potential 3.5 Probability of Extinction for Stochastic Case 3.6 Resilience for Stage Model 3.7 Simulation Results 3.7.1 Stage-Structured Biomass Dynamics and Yield 3.7.2 Impact on Size Structure and Biomass 3.7.3 The Stock Recovery Potential 3.7.4 The Probability of Extinction 3.7.5 Resilience 3.8 Conclusions and Discussion 3.9 Appendix 3.1. Stage-Structured Biomass Model with Logistic Resource Dynamics 3.10 Appendix 3.2. Proof of Uniqueness of the Solution w*J(R) References 4 Representations of Polynomial Covariance Type Commutation Relations by Linear Integral Operators on Lp Over Measure Spaces 4.1 Introduction 4.2 Preliminaries and Notations 4.3 Representations by Linear Integral Operators References 5 Computable Bounds of Exponential Moments of Simultaneous Hitting Time for Two Time-Inhomogeneous Atomic Markov Chains 5.1 Introduction 5.2 Notation 5.3 Geometric Drift Condition 5.3.1 Drift Condition for Inhomogeneous Markov Chains 5.3.2 Constructing a Sequence that Dominates Return Time 5.4 Main Result 5.5 Auxiliary Lemmas References 6 Valuation and Optimal Strategies for American Options Under a Markovian Regime-Switching Model 6.1 Introduction 6.2 A Markovian Regime-Switching Model 6.3 Pricing of American Options 6.4 Some Properties for Optimal Strategy 6.4.1 Preliminaries 6.4.2 Lemmata 6.4.3 Properties 6.4.4 Optimal Strategy 6.5 Numerical Examples 6.5.1 Model Implementation 6.5.2 Numerical Results 6.6 Conclusion and Future Research References 7 Inequalities for Moments of Branching Processes in a Varying Environment 7.1 Introduction 7.2 Main Results 7.3 Auxiliary Results 7.4 Proof of the Main Results References 8 A Law of the Iterated Logarithm for the Empirical Process Based Upon Twice Censored Data 8.1 Introduction 8.2 Product-Limit Estimator 8.3 Results 8.4 Simulation 8.5 Proofs of the Lemmas References 9 Investigating Some Attributes of Periodicity in DNA Sequences via Semi-Markov Modelling 9.1 Introduction 9.2 The Basic Framework 9.2.1 The Homogeneous Case 9.2.2 The Case of Partial Non Homogeneity 9.3 Quasiperiodicity 9.4 Illustrations of Real and Synthetic Data 9.4.1 DNA Sequences of Synthetic Data 9.4.2 DNA Sequences of Real Data 9.5 Conclusion References 10 Limit Theorems of Baxter Type for Generalized Random Gaussian Processes with Independent Values 10.1 Introduction 10.2 The Covariance Functional of a Generalized Random Process with Independent Values 10.3 The Families of Test Functions 10.4 Convergence of Baxter Sums 10.5 Conditions of Singularity of Measures References 11 On Explicit Formulas of Steady-State Probabilities for the [ M/M/c/c+m ]-Type Retrial Queue 11.1 Introduction 11.2 Mathematical Model and Ergodicity Condition 11.3 Steady-State Distribution 11.4 Numerical Results 11.5 Conclusion and Future Research References 12 Testing Cubature Formulae on Wiener Space Versus Explicit Pricing Formulae 12.1 Introduction and Background 12.2 Implementation of Cubature Formulae on Wiener Space 12.2.1 SDE and Stochastic Integral (Itô) 12.2.2 SDE and Stochastic Integral (Stratonovich) 12.2.3 Itô Integral Versus Stratonovich Integral 12.3 Construction of Cubature Formulae on Wiener Space 12.3.1 The Trajectories of SDE (12.6) 12.4 Cubature Formula of Degree 5 12.4.1 Black–Scholes Versus Cubature Pricing Formula (Degree 5) 12.4.2 Construction of a Trinomial Model Based on the Cubature Formula 12.5 Cubature Formula of Degree 7 12.5.1 Black–Scholes Versus Cubature Formula (Degree 7) 12.6 Conclusion and Future Works References 13 Gaussian Processes with Volterra Kernels 13.1 Introduction 13.2 Gaussian Volterra Processes and Their Smoothness Properties 13.3 Gaussian Volterra Processes with Sonine Kernels 13.3.1 Fractional Brownian Motion and Sonine Kernels 13.3.2 A General Approach to Volterra Processes with Sonine Kernels 13.4 Examples of Sonine Kernels 13.5 Appendix 13.5.1 Inequalities for Norms of Convolutions and Products 13.5.2 Continuity of Trajectories and Hölder Condition 13.5.3 Application of Fractional Calculus 13.5.4 Existence of the Solution to Volterra Integral Equation Where the Integral Operator Is an Operator of Convolution with Integrable Singularity at 0 References 14 Stochastic Differential Equations Driven by Additive Volterra–Lévy and Volterra–Gaussian Noises 14.1 Introduction 14.2 Brief Description of Volterra–Lévy Processes 14.3 Moment Upper Bounds and Hölder Properties of Volterra–Lévy Processes 14.3.1 General Upper Bounds for the Incremental Moments 14.3.2 Incremental Moments and Hölder Continuity Under Power Restrictions on the Kernel g 14.3.3 Application of the Upper Bounds for the Incremental Moments to Volterra–Lévy Processes of Three Types 14.3.4 Examples of Volterra–Lévy Processes with Power Restrictions on the Kernel 14.3.5 Sonine Pairs and Two Kinds of Volterra–Gaussian Processes 14.4 Equations with Locally Lipschitz Drift of Linear Growth 14.5 Equations with Volterra–Gaussian Processes 14.5.1 Girsanov Theorem. Definition of Weak and Strong Solutions 14.5.2 Weak Existence and Weak Uniqueness 14.5.3 Pathwise Uniqueness of Weak Solution. Existence and Uniqueness of Strong Solution References 15 Fixed Point Results of Generalized Cyclic Contractive Mappings in Multiplicative Metric Spaces 15.1 Introduction 15.1.1 Multiplicative Metric Spaces 15.1.2 Fixed Points of Maps in Multiplicative Metric Space 15.2 Cyclic Contraction Mappings 15.2.1 Fixed Point Results of Cyclic Contraction Mappings 15.2.2 Well-Posedness Results for Cyclic Contractive Maps 15.2.3 Limit Shadowing Property for Cyclic Contractive Maps 15.2.4 Periodic Points of Cyclic Contractive Maps References 16 Fixed Points of T-Hardy Rogers Type Mappings and Coupled Fixed Point Results in Multiplicative Metric Spaces 16.1 Introduction 16.2 Fixed Points of T-Hardy Rogers Type Contractive Maps 16.2.1 Well-Posedness Results for T-Hardy Rogers Type Contractions 16.2.2 Limit Shadowing Property for T-Hardy Rogers Type Contractions 16.2.3 Periodic Point Property for T-Hardy Rogers Type Contractive Maps 16.3 Coupled Fixed Points in Multiplicative Metric Spaces 16.3.1 Coupled Fixed Points 16.3.2 Coupled Fixed Point Results 16.3.3 Well-Posedness Result for Coupled Maps 16.3.4 Application References 17 Some Periodic Point and Fixed Point Results in Multiplicative Metric Spaces 17.1 Introduction 17.2 Periodic Point Results 17.3 Cyclic Contractions 17.4 Applications References 18 Bochner Integrability of the Random Fixed Point of a Generalized Random Operator and Almost Sure Stability of Some Faster Random Iterative Processes 18.1 Introduction and Preliminaries 18.2 Bochner Integrability of the Fixed Point of a Generalized Random Operator 18.3 Almost Sure T-Stability Results 18.4 Application to Random Nonlinear Integral Equation of the Hammerstein Type References 19 An Approach to the Absence of Price Bubbles Through State-Price Deflators 19.1 Introduction 19.2 Securities Market Model and State-Price Deflators 19.3 About the Existence of Price Bubbles 19.4 Vector Spaces Associated to Marketed Strategies 19.5 Conclusion References 20 Form Factors for Stars Generalized Grey Brownian Motion 20.1 Introduction 20.2 Generalized Grey Brownian Motion in Arbitrary Dimensions 20.2.1 Construction of the Mittag-Leffler Measure 20.2.2 Generalized Grey Brownian Motion 20.3 Form Factors for Different Classes of Star Generalized Grey Brownian Motion 20.4 Form Factors for Star Fractional Brownian Motion 20.5 Conclusion References 21 Flows of Rare Events for Regularly Perturbed Semi-Markov Processes 21.1 Introduction 21.2 First-Rare-Event Times for Perturbed Semi-Markov Processes 21.2.1 First-Rare-Event Times 21.2.2 Asymptotically Uniformly Ergodic Markov Chains 21.2.3 Necessary and Sufficient Conditions of Weak Convergence for First-Rare-Event Times 21.3 Counting Processes Generated by Flows of Rare Events 21.3.1 Counting Processes for Rare-Events 21.3.2 Necessary and Sufficient Conditions of Convergence for Counting Processes Generated by Flows of Rare Events 21.4 Markov Renewal Processes Generated by Flows of Rare Events 21.4.1 Return Times and Rare Events 21.4.2 Necessary and Sufficient Conditions of Convergence For Markov Renewal Processes Generated by Flows of Rare Events 21.5 Vector Counting Processes Generated by Flows of Rare Events 21.5.1 Vector Counting Process for Rare Events 21.5.2 Necessary and Sufficient Conditions of Convergence for Vector Counting Process Generated by Flows of Rare Events References Part II Statistical Methods 22 An Econometric Analysis of Drawdown Based Measures 22.1 Introduction 22.2 Risk Measures 22.3 Mathematical Models 22.3.1 ARMA Model 22.3.2 GARCH Model 22.3.3 EGARCH Model 22.4 Application 22.5 Conclusions References 23 Forecasting and Optimizing Patient Enrolment in Clinical Trials Under Various Restrictions 23.1 Introduction 23.2 Enrolment Modelling 23.2.1 Modelling Unrestricted Enrolment 23.2.2 Modelling Enrolment on Country Level 23.2.3 Modelling Global Enrolment 23.3 Modelling Enrolment with Restrictions 23.3.1 Modelling Enrolment with Restrictions in One Centre 23.3.2 Modelling Enrolment with Restrictions on Country Level 23.3.3 Forecasting Global Enrolment Under Country Restrictions 23.3.4 Using Historic Data for Better Prediction of the Enrolment Rates for the New Trials 23.4 Optimal Enrolment Design 23.4.1 Unrestricted Enrolment 23.4.2 Restricted Enrolment 23.5 Conclusions 23.6 Appendix 23.6.1 Approximation of the Convolution of PG Variables 23.6.2 Calculation of the Mean of the Restricted Process 23.6.3 Calculation of the 2nd Moment of the Restricted Process References 24 Algorithms for Recalculating Alpha and Eigenvector Centrality Measures Using Graph Partitioning Techniques 24.1 Introduction 24.1.1 Notation and Abbreviations 24.1.2 Graph Concepts 24.2 The Alpha Centrality Algorithm 24.2.1 Stages for Algorithm Formulation 24.2.2 Computing Other Centrality Measures by Using the α-Centrality Measure Algorithm 24.2.3 Example 24.3 The Eigenvector Centrality for Large Directed Graphs 24.3.1 The Eigenvector Centrality Algorithm 24.3.2 Reformulation of the Power Method 24.3.3 Computing Eigenvector Centrality of a Graph Componentwise 24.4 Discussion and Conclusion References 25 On Statistical Properties of the Estimator of Impulse Response Function 25.1 Introduction 25.2 The Estimator of an Impulse Response Function and Its Properties 25.3 Trigonometric Basis 25.4 Square Gaussian Random Variables and Processes 25.5 On the Rate of Convergence of the Estimator of Impulse Response Function 25.6 Testing Hypotheses on the Impulse Response Function 25.7 Simulation Study References 26 Connections Between the Extreme Points for Vandermonde Determinants and Minimizing Risk Measure in Financial Mathematics 26.1 Introduction 26.2 Money Market Account 26.3 Derivatives and Arbitrage Pricing 26.4 Pricing Derivatives 26.4.1 Discount Bonds and Coupon-Bearing Bonds 26.4.2 Yield to Maturity 26.4.3 Spot Rate 26.4.4 Forward Yields and Forward Rates 26.4.5 Forward and Future Contracts 26.5 Options 26.6 Optimization Model in Finance 26.6.1 Extreme Points of the Vandermonde Determinant on Various Surfaces Defined as Efficient Frontiers 26.7 Vandermonde Matrix, Determinant and Portfolio Construction 26.7.1 Optimum Value of Generalized Variance V[] with Extreme Points of Vandermonde Determinant 26.8 Conclusion References 27 Extreme Points of the Vandermonde Determinant and Wishart Ensemble on Symmetric Cones 27.1 Introduction 27.1.1 Gaussian and Chi-Square Distributions 27.1.2 Laplace Transform and The Wishart Density 27.1.3 The Gindikin Set and Wishart Joint Eigenvalue Distribution 27.2 A Quick Jump into Wishart Distribution on Symmetric Cones 27.3 Extreme Points of the Degenerate Wishart Distribution and Vandermonde Determinant 27.4 Conclusion References 28 Option Pricing and Stochastic Optimization 28.1 Introduction 28.2 Problem of Investor 28.2.1 Problem Statement 28.2.2 Stochastic Optimization and Probability Functionals 28.3 Applying Investor Problem for Option Pricing 28.3.1 Investor Optimal Price 28.3.2 Examples 28.3.3 Numerical Results 28.4 Summary References Part III Engineering Mathematics 29 Stochastic Solutions of Stefan Problems with General Time-Dependent Boundary Conditions 29.1 Introduction 29.1.1 Random Walk and the Heat Equation 29.1.2 A Random Walk Model with Boundary Conditions 29.2 The Stefan Problem 29.2.1 The Stefan Condition 29.2.2 Modelling the Moving Boundary 29.2.3 Stefan Problem with an Incoming Heat Flux 29.3 Numerical Results for Stefan Problems 29.3.1 Stefan Problem with Constant Boundary Condition f(t)=T0 29.3.2 Stefan Problem with a Special Boundary Condition f(t)=et-1 29.3.3 Stefan Problem with a Special Heat Flux Boundary Condition h(t)=-q0/sqrtt 29.3.4 Stefan Problem with Oscillating Boundary Condition 29.3.5 Stefan Problem with Boundary Condition According to Daytime Temperature Variations 29.4 Discussion 29.5 Conclusions References 30 Numerical Upscaling via the Wave Equation with Perfectly Matched Layers 30.1 Introduction 30.2 The Wave Approach to Approximate a0 30.3 Perfectly Matched Layer for the Second Order Wave Equation 30.3.1 The New Local Problem Based on the Wave Equation Combined with PML 30.4 Numerical Discretization 30.5 Computational Results 30.6 Concluding Remarks References 31 Homotopy Analysis Method (HAM) for Differential Equations Pertaining to the Mixed Convection Boundary-Layer Flow over a Vertical Surface Embedded in a Porous Medium 31.1 Introduction 31.2 Governing Equations 31.3 Homotopy Analysis Solution 31.4 Results and Discussion 31.5 Concluding Remarks References 32 Magnetic Force Calculation Between Truncated Cone Shaped Permanent Magnet and Soft Magnetic Cylinder Using Hybrid Boundary Element Method 32.1 Introduction 32.2 Problem Definition 32.2.1 Force Calulation Betwen Circular Loops Loaded with Magnetization Charges 32.2.2 Force Calulation Betwen Permanent Magnet and Soft Magnetic Cylinder 32.3 Numerical Results 32.4 Conclusion References 33 A Mathematical Model for Harvesting in a Stage-Structured Cannibalistic System 33.1 Introduction 33.2 Model Description 33.2.1 Biological Assumptions 33.2.2 The Schematic Diagram of the Model 33.2.3 The Model 33.2.4 Stability Analysis 33.3 Numerical Simulation 33.3.1 Comparing Harvesting Scenarios 33.4 Discussion and Conclusion References 34 On the Approximation of Physiologically Structured Population Model with a Three Stage-Structured Population Model in a Grazing System 34.1 Introduction 34.1.1 Consumer-Resource Systems 34.1.2 Unstructured and Structured Population Models 34.1.3 Description of the Grazing System 34.2 Physiologically Structured Population Models 34.2.1 Size-Structured Population Models 34.2.2 Formulation of the Size-Structured Population Model 34.2.3 Vital Rates 34.2.4 Modification of the Physiologically Structured Population Model 34.3 Stage-Structured Population Model 34.4 Discussion and Conclusion References 35 Magnetohydrodynamic Casson Nanofluid Flow Over a Nonlinear Stretching Sheet with Velocity Slip and Convective Boundary Conditions 35.1 Introduction 35.2 Mathematical Formulation 35.3 Results and Discussion 35.4 Velocity Profiles 35.5 Temperature Profiles 35.6 Concentration Profiles 35.7 Conclusion References 36 Mathematical and Computational Analysis of MHD Viscoelastic Fluid Flow and Heat Transfer Over Stretching Surface Embedded in a Saturated Porous Medium 36.1 Introduction 36.2 Mathematical Formulation 36.3 Boundary Conditions 36.3.1 Prescribed Surface Temperature (PST) 36.3.2 Prescribed Wall Heat Flux (PHF) 36.4 Dimensionless Quantities 36.5 Reduced Non-linear Ordinary Differential Equations 36.6 Reduced Boundary Conditions 36.6.1 Prescribed Surface Temperature (PST) 36.6.2 Prescribed Heat Flux (PHF) 36.7 Results and Discussion 36.8 Conclusion References 37 Numerical Solution of Boundary Layer Flow Problem of a Maxwell Fluid Past a Porous Stretching Surface 37.1 Introduction 37.2 Mathematical Formulation 37.3 Physical Quantities 37.4 Numerical Solution of the Problem 37.5 Results and Discussion 37.6 Conclusions References 38 Effect of Electromagnetic Field on Mixed Convection of Two Immiscible Conducting Fluids in a Vertical Channel 38.1 Introduction 38.2 Mathematical Formulation 38.3 Analytical Solutions 38.3.1 Special Cases 38.4 Results and Discussion 38.5 Conclusion 38.6 Nomenclature References 39 Stochastic Smart Grid Meter for Industry 4.0—From an Idea to the Practical Prototype 39.1 Introduction 39.2 Multibit SFADC 39.3 Base Conditions and Limitations 39.4 Mathematical Model of the SFADC Measurement Uncertainty 39.5 Multibit SMI 39.6 Stochastic Digital Electrical Energy Meter 39.7 Hardware Prototype of 4-Bit SDEEM 39.8 Measurement Results 39.9 Conclusion References 40 Mathematical Basis of the Stochastic Digital Measurement Method 40.1 Introduction 40.2 Measurement of the Mean Value of the Signal 40.3 Measurement of the Mean Value of the Product of Two Signals Using Two-Bit SDMM 40.3.1 Measurement in Time Domain 40.3.2 Measurement in Fourier Domain 40.4 Stochastic Digital DFT Processor (SDDFT Processor) 40.5 Application of SDMM 40.6 Discussion 40.7 Conclusion References Subject Index Index Author Index Author Index