دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 3
نویسندگان: Kurt Marti (auth.)
سری:
ISBN (شابک) : 9783662462133, 9783662462140
ناشر: Springer-Verlag Berlin Heidelberg
سال نشر: 2015
تعداد صفحات: 389
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 4 مگابایت
کلمات کلیدی مربوط به کتاب روشهای بهینه سازی تصادفی: برنامه های کاربردی در تحقیقات مهندسی و عملیات: تحقیق در عملیات/تئوری تصمیم گیری، بهینه سازی، هوش محاسباتی
در صورت تبدیل فایل کتاب Stochastic Optimization Methods: Applications in Engineering and Operations Research به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب روشهای بهینه سازی تصادفی: برنامه های کاربردی در تحقیقات مهندسی و عملیات نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب به بررسی مسائل بهینهسازی میپردازد که در عمل شامل پارامترهای مدل تصادفی میشوند. محاسبه راهحلهای بهینه قوی، به عنوان مثال، راهحلهای بهینه که نسبت به تغییرات پارامترهای تصادفی حساس نیستند، در جایی که مسائل جایگزین قطعی مناسب مورد نیاز است، توضیح میدهد. بر اساس توزیع احتمال دادههای تصادفی و با استفاده از مفاهیم نظری تصمیم، مسائل بهینهسازی تحت عدم قطعیت تصادفی به مسائل جایگزین قطعی مناسب تبدیل میشوند.
با توجه به احتمالات و انتظارات موجود، این کتاب همچنین نحوه اعمال را نشان میدهد. تکنیک های حل تقریبی چندین روش تقریب قطعی و تصادفی ارائه شده است: روشهای بسط تیلور، روشهای رگرسیون و سطح پاسخ (RSM)، نابرابریهای احتمال، خطیسازی چندگانه حوزههای بقا/شکست، روشهای گسستهسازی، تقریب محدب/جهتهای نزول قطعی/نقاط کارآمد، و تقریب تصادفی رویه ها و فرمول های تمایز برای احتمالات و انتظارات.
در ویرایش سوم، این کتاب روش های بهینه سازی تصادفی را بیشتر توسعه می دهد. بهویژه، اکنون نشان میدهد که چگونه میتوان روشهای بهینهسازی تصادفی را برای حل تقریبی مشکلات بتن مهم ناشی از تحقیقات مهندسی، اقتصاد و عملیات به کار برد.
This book examines optimization problems that in practice involve random model parameters. It details the computation of robust optimal solutions, i.e., optimal solutions that are insensitive with respect to random parameter variations, where appropriate deterministic substitute problems are needed. Based on the probability distribution of the random data and using decision theoretical concepts, optimization problems under stochastic uncertainty are converted into appropriate deterministic substitute problems.
Due to the probabilities and expectations involved, the book also shows how to apply approximative solution techniques. Several deterministic and stochastic approximation methods are provided: Taylor expansion methods, regression and response surface methods (RSM), probability inequalities, multiple linearization of survival/failure domains, discretization methods, convex approximation/deterministic descent directions/efficient points, stochastic approximation and gradient procedures and differentiation formulas for probabilities and expectations.
In the third edition, this book further develops stochastic optimization methods. In particular, it now shows how to apply stochastic optimization methods to the approximate solution of important concrete problems arising in engineering, economics and operations research.
Cover S Title Stochastic Optimization Methods Copyright © Springer-Verlag Berlin Heidelberg 2015 ISBN 978-3-662-46213-3 ISBN 978-3-662-46214-0 (eBook) DOI 10.1007/978-3-662-46214-0 Library of Congress Control Number: 2015933010 Preface Preface to the First Edition Preface to the Second Edition Outline of the 3rd Edition Contents 1 Stochastic Optimization Methods 1.1 Introduction 1.2 Deterministic Substitute Problems: Basic Formulation 1.2.1 Minimum or Bounded Expected Costs 1.2.2 Minimum or Bounded Maximum Costs (Worst Case) 1.3 Optimal Decision/Design Problems with Random Parameters 1.4 Deterministic Substitute Problems in Optimal Decision/Design 1.4.1 Expected Cost or Loss Functions 1.5 Basic Properties of Deterministic Substitute Problems 1.6 Approximations of Deterministic Substitute Problems in Optimal Design/Decision 1.6.1 Approximation of the Loss Function 1.6.2 Approximation of State (Performance) Functions Approximation of Expected Loss Functions 1.6.3 Taylor Expansion Methods (Complete) Expansion with Respect to a Inner (Partial) Expansions with Respect to a 1.7 Approximation of Probabilities: Probability Inequalities 1.7.1 Bonferroni-Type Inequalities 1.7.2 Tschebyscheff-Type Inequalities Two-Sided Constraints One-Sided Inequalities 2 Optimal Control Under Stochastic Uncertainty 2.1 Stochastic Control Systems 2.1.1 Random Differential and Integral Equations Parametric Representation of the Random Differential/Integral Equation Stochastic Differential Equations 2.1.2 Objective Function Optimal Control Under Stochastic Uncertainty 2.2 Control Laws 2.3 Convex Approximation by Inner Linearization 2.4 Computation of Directional Derivatives 2.5 Canonical (Hamiltonian) System of Differential Equations/Two-Point Boundary Value Problem 2.6 Stationary Controls 2.7 Canonical (Hamiltonian) System of Differential 2.8 Computation of Expectations by Means of Taylor Expansions 2.8.1 Complete Taylor Expansion 2.8.2 Inner or Partial Taylor Expansion 3 Stochastic Optimal Open-Loop Feedback Control 3.1 Dynamic Structural Systems Under Stochastic Uncertainty 3.1.1 Stochastic Optimal Structural Control: Active Control 3.1.2 Stochastic Optimal Design of Regulators 3.1.3 Robust (Optimal) Open-Loop Feedback Control 3.1.4 Stochastic Optimal Open-Loop Feedback Control 3.2 Expected Total Cost Function 3.3 Open-Loop Control Problem on the Remaining Time Interval [tb,tf] 3.4 The Stochastic Hamiltonian of (3.7a–d) 3.4.1 Expected Hamiltonian (with Respect to the Time Interval [tb,tf] and Information Atb) 3.4.2 H-Minimal Control on [tb;tf] Strictly Convex Cost Function; No Control Constraints 3.5 Canonical (Hamiltonian) System 3.6 Minimum Energy Control 3.6.1 Endpoint Control Quadratic Control Costs 3.6.2 Endpoint Control with Different Cost Functions 3.6.3 Weighted Quadratic Terminal Costs Quadratic Control Costs 3.7 Nonzero Costs for Displacements 3.7.1 Quadratic Control and Terminal Costs 3.8 Stochastic Weight Matrix Q=Q(t;.) 3.9 Uniformly Bounded Sets of Controls Dt, t0 =t =tf 3.10 Approximate Solution of the Two-Point Boundary Value Problem (BVP) 3.11 Example 4 Adaptive Optimal Stochastic Trajectory Planning and Control (AOSTPC) 4.1 Introduction 4.2 Optimal Trajectory Planning for Robots 4.3 Problem Transformation 4.3.1 Transformation of the Dynamic Equation 4.3.2 Transformation of the Control Constraints 4.3.3 Transformation of the State Constraints 4.3.4 Transformation of the Objective Function 4.4 OSTP: Optimal Stochastic Trajectory Planning 4.4.1 Computational Aspects 4.4.2 Optimal Reference Trajectory, Optimal Feedforward Control 4.5 AOSTP: Adaptive Optimal Stochastic Trajectory Planning 4.5.1 (OSTP)-Transformation 4.5.2 The Reference Variational Problem Transformation of the Initial State Values 4.5.3 Numerical Solutions of (OSTP) in Real-Time Discretization Techniques NN-Approximation Linearization Methods Combination of Discretization and Linearization 4.6 Online Control Corrections: PD-Controller 4.6.1 Basic Properties of the Embedding q(t, e) e=e0:= 0 e= e1 := 1 Taylor-Expansion with Respect to e 4.6.2 The 1st Order Differential dq 4.6.3 The 2nd Order Differential d2q 4.6.4 Third and Higher Order Differentials 4.7 Online Control Corrections: PID Controllers 4.7.1 Basic Properties of the Embedding q (t; ) 4.7.2 Taylor Expansion with Respect to 4.7.3 The 1st Order Differential dq Diagonalmatrices Kp, Kd; Ki Mean Absolute 1st Order Tracking Error Minimality or Boundedness Properties 5 Optimal Design of Regulators Stochastic Optimal Design of Regulators 5.1 Tracking Error 5.1.1 Optimal PD-Regulator 5.2 Parametric Regulator Models 5.2.1 Linear Regulator Nonlinear (Polynomial) Regulator 5.2.2 Explicit Representation of Polynomial Regulators 5.2.3 Remarks to the Linear Regulator Remark to the Regulator Costs 5.3 Computation of the Expected Total Costs of the Optimal Regulator Design 5.3.1 Computation of Conditional Expectationsby Taylor Expansion Computation of a (t;a) 5.3.2 Quadratic Cost Functions 5.4 Approximation of the Stochastic Regulator OptimizationProblem 5.4.1 Approximation of the Expected Costs: Expansions of 1st Order 5.5 Computation of the Derivatives of the Tracking Error 5.5.1 Derivatives with Respect to Dynamic Parametersat Stage j 5.5.2 Derivatives with Respect to the Initial Valuesat Stage j 5.5.3 Solution of the Perturbation Equation Selection of the Matrices Kp,Kd 5.6 Computation of the Objective Function 5.7 Optimal PID-Regulator 5.7.1 Quadratic Cost Functions Computation of the Expectation by Taylor Expansion Calculation of the Sensitivities Partial Derivative with Respect to .pD Partial Derivative with Respect to .q0 Partial Derivative with Respect to .0 5.7.2 The Approximate Regulator Optimization Problem 6 Expected Total Cost Minimum Design of Plane Frames 6.1 Introduction 6.2 Stochastic Linear Programming Techniques 6.2.1 Limit (Collapse) Load Analysis of Structuresas a Linear Programming Problem Plastic and Elastic Design of Structures 6.2.2 Plane Frames 6.2.3 Yield Condition in Case of M–N-Interaction Symmetric Yield Stresses Piecewise Linearization of K0a 6.2.4 Approximation of the Yield Condition by Using Reference Capacities 6.2.5 Asymmetric Yield Stresses Formulation of the Yield Condition in the Non Symmetric Case Use of Reference Capacities Stochastic Optimization 6.2.6 Violation of the Yield Condition 6.2.7 Cost Function Choice of the Cost Factors Total Costs Discretization Methods Complete Recourse Numerical Implementation 7 Stochastic Structural Optimization with Quadratic Loss Functions 7.1 Introduction 7.2 State and Cost Functions 7.2.1 Cost Functions 7.3 Minimum Expected Quadratic Costs 7.4 Deterministic Substitute Problems 7.4.1 Weight (Volume)-Minimization Subjectto Expected Cost Constraints 7.4.2 Minimum Expected Total Costs 7.5 Stochastic Nonlinear Programming 7.5.1 Symmetric, Non Uniform Yield Stresses 7.5.2 Non Symmetric Yield Stresses 7.6 Reliability Analysis 7.7 Numerical Example: 12-Bar Truss 7.7.1 Numerical Results: MEC 7.7.2 Numerical Results: ECBO 8 Maximum Entropy Techniques 8.1 Uncertainty Functions Based on Decision Problems 8.1.1 Optimal Decisions Based on the Two-Stage Hypothesis Finding (Estimation) and Decision Making Procedure 8.1.2 Stability/Instability Properties 8.2 The Generalized Inaccuracy Function H(.,ß) 8.2.1 Special Loss Sets V 8.2.2 Representation of H(.;ß) and H(.;ß)by Means of Lagrange Duality 8.3 Generalized Divergence and Generalized Minimum Discrimination Information 8.3.1 Generalized Divergence 8.3.2 I-, J-Projections 8.3.3 Minimum Discrimination Information References Index