دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1 نویسندگان: Lirong Cui (editor), Ilia Frenkel (editor), Anatoly Lisnianski (editor) سری: Advanced Research in Reliability and System Assurance Engineering ISBN (شابک) : 0367345854, 9780367345853 ناشر: CRC Press سال نشر: 2020 تعداد صفحات: 483 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 39 مگابایت
در صورت تبدیل فایل کتاب Stochastic Models in Reliability Engineering (Advanced Research in Reliability and System Assurance Engineering) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مدلهای تصادفی در مهندسی قابلیت اطمینان () نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب کار جمعی بسیاری از دانشمندان، تحلیلگران، ریاضیدانان و مهندسان برجسته است که در بخش مقدماتی علم و مهندسی قابلیت اطمینان کار کرده اند. این کتاب موضوعات مرسوم و معاصر در علم قابلیت اطمینان را پوشش میدهد، که همه آنها در سالهای اخیر شاهد فعالیتهای تحقیقاتی گستردهای بودهاند.
روشهای ارائهشده در این کتاب، نمونههایی واقعی هستند که پیشرفتهایی را در قابلیت اطمینان و در دسترس بودن ضروری نشان میدهند. تجهیزات صنعتی مانند تصویربرداری تشدید مغناطیسی پزشکی، سیستمهای قدرت، درایوهای کششی برای هلیکوپتر جستجو و نجات، و سیستمهای تهویه مطبوع.
این کتاب مطالعات موردی واقعی سیستمهای تهویه مطبوع چند حالته اضافی را برای آزمایشگاههای شیمیایی ارائه میکند. و ارزیابی های قابلیت اطمینان و تحمل خطا و محاسبات در دسترس بودن را پوشش می دهد. موضوعات مرسوم و معاصر در مهندسی قابلیت اطمینان، از جمله تخریب، شبکهها، قابلیت اطمینان پویا، انعطافپذیری و سیستمهای چند حالته مورد بحث قرار میگیرند که همگی موضوعات نسبتاً جدیدی در این زمینه هستند.
این کتاب برای مهندسین طراحی شده است. و دانشمندان، و همچنین دانشجویان تحصیلات تکمیلی درگیر در طراحی قابلیت اطمینان، تجزیه و تحلیل، آزمایشها، و احتمالات کاربردی و آمار.
This book is a collective work by many leading scientists, analysts, mathematicians, and engineers who have been working at the front end of reliability science and engineering. The book covers conventional and contemporary topics in reliability science, all of which have seen extended research activities in recent years.
The methods presented in this book are real-world examples that demonstrate improvements in essential reliability and availability for industrial equipment such as medical magnetic resonance imaging, power systems, traction drives for a search and rescue helicopter, and air conditioning systems.
The book presents real case studies of redundant multi-state air conditioning systems for chemical laboratories and covers assessments of reliability and fault tolerance and availability calculations. Conventional and contemporary topics in reliability engineering are discussed, including degradation, networks, dynamic reliability, resilience, and multi-state systems, all of which are relatively new topics to the field.
The book is aimed at engineers and scientists, as well as postgraduate students involved in reliability design, analysis, experiments, and applied probability and statistics.
Cover Half Title Series Page Title Page Copyright Page Table of Contents Preface Editors Contributors Chapter 1 Reliability Analysis of a Pseudo Working Markov Repairable System 1.1 Introduction 1.2 Basic Assumptions 1.3 Reliability Indexes 1.3.1 Case of Constant τ 1.3.1.1 Time to First Failure 1.3.1.2 Point-Wise and Interval Availabilities 1.3.2 Case of Random τ 1.4 Numerical Examples and Special Cases 1.5 Conclusions References Chapter 2 System Reliability Assessment with Multivariate Dependence Models 2.1 Background 2.1.1 A Motivating Example 2.1.2 Literature Review 2.1.3 Overview 2.2 Copula Theory 2.3 Copula-Based Multivariate Dependence Models 2.3.1 Elliptical Copula (EC) 2.3.2 Exchangeable Archimedean Copula (EAC) 2.3.3 Hierarchical Archimedean Copula (HAC) 2.3.4 Mixed Copula (MC) 2.3.5 Vine Copula (VC) 2.4 System Reliability Assessment from Copula Perspective 2.5 Revisiting the Motivating Example 2.5.1 Illustration Using EC 2.5.2 Illustration Using EAC 2.5.3 Illustration Using HAC 2.5.4 Illustration Using MC 2.5.5 Illustration Using VC 2.6 Discussion and Future Study References Chapter 3 Reliability Modelling of Multi-Phased Linear Consecutively Connected Systems 3.1 Introduction 3.2 The Model 3.2.1 System Structure 3.2.2 Signal Transmission of CE 3.2.3 Signal Transmission of Node 3.2.4 Reliability of LMCCSs 3.3 Illustrative Example 3.4 Summary References Chapter 4 A Method for Complex Multi-State Systems Reliability Analysis Based on Compression Inference Algorithm and Bayesian Network 4.1 Introduction 4.2 Format of NPT 4.3 Proposed Multi-State Compression Algorithm 4.3.1 Run and Phrase 4.3.2 Multi-State Compression Algorithm 4.4 Proposed Multi-State Inference Algorithm 4.4.1 Rules for Calculating Intermediate Variables 4.4.2 Proposed Multi-State Inference Algorithm 4.5 Case Study 4.5.1 Case Background 4.5.2 Calculation and Analysis 4.6 Summary Appendix A Appendix B References Chapter 5 Reliability Analysis of Demand-Based Warm Standby System with Multi-State Common Bus 5.1 Introduction 5.2 Model Description for a DBWSS with Multi-State Common Bus Performance Sharing 5.3 Time-Varying Reliability Evaluation Based on MDD 5.3.1 The Construction of System MDD 5.3.2 System Reliability Evaluation Based on MDD 5.4 Numerical Studies 5.4.1 Illustrative Example 5.4.2 System MDD for the Illustrative Example 5.4.3 System Reliability Assessment for the Illustrative Example 5.5 Conclusions References Chapter 6 An Upside-Down Bathtub-Shaped Failure Rate Model Using a DUS Transformation of Lomax Distribution 6.1 Introduction 6.2 DUS-Lomax Distribution 6.3 Shapes 6.3.1 Shape of Probability Density Function 6.3.2 Shape of Failure Rate Function 6.4 Statistical Properties 6.4.1 Moments 6.4.2 Moment Generating Function 6.4.3 Characteristic Function 6.4.4 Quantile Function 6.4.5 Entropy 6.5 Distributions of Maximum and Minimum 6.6 Estimation of Parameters 6.7 Asymptotic Distribution and Confidence Bounds 6.8 Stress-Strength Reliability Estimation 6.8.1 The Maximum Likelihood Estimation of R 6.9 Simulation Study 6.10 Data Analysis 6.11 Conclusion References Chapter 7 Reliability Analysis of Multi-State Systems with Dependent Failures Based on Copula 7.1 Introduction 7.2 Copula 7.2.1 Definition of Copula 7.2.2 Copula Selection and Parameter Estimation 7.3 Modelling and Reliability Analysis of Dependent Multi-State Systems 7.3.1 Series Dependent Multi-State System 7.3.2 Parallel Dependent Multi-State System 7.4 Application 7.4.1 Series Process of a Hydrocyclone System 7.4.2 Parallel Process of a Hydrocyclone System 7.5 Conclusions Acknowledgement References Chapter 8 Modelling and Inference for Special Types of Semi-Markov Processes 8.1 Introduction 8.2 Semi-Markov Processes and Multi-State Systems 8.2.1 INID Random Variables – The Maximum Case 8.2.2 INID Random Variables – The Minimum Case 8.3 Parameter Estimation and Consistency 8.4 Markov Renewal Function and Semi-Markov Transition Matrix 8.5 Reliability Indicators 8.6 Simulation Study Acknowledgements References Chapter 9 Weighted Multi-Attribute Acceptance Sampling Plans 9.1 Introduction: Background and Driving Forces 9.2 Two Acceptance Sampling Plans 9.3 OC Function of Acceptance Sampling Plans 9.3.1 OC Function of Acceptance Sampling Plan I 9.3.2 OC Function of Acceptance Sampling Plan II 9.4 Design of Acceptance Sampling Plans 9.5 Results and Discussions 9.6 Conclusions List of Abbreviations References Chapter 10 Reliability Assessment for Systems Suffering Common Cause Failure Based on Bayesian Networks and Proportional Hazards Model 10.1 Introduction 10.2 Multi-Component Systems with Dynamic Environment and Common Cause Failure 10.2.1 System Description 10.2.2 Assumptions 10.3 Modelling Multi-Component Systems with Dynamic Environment and Common Cause Failure 10.3.1 Modelling Component with Dynamic Environment by Proportional Hazards Model 10.3.2 Dynamic Bayesian Networks Framework for System with CCF 10.3.2.1 Bayesian Networks and Dynamic Bayesian Networks 10.3.2.2 BN Representation of System with CCF 10.4 Numerical Examples 10.5 Conclusions Acknowledgements References Chapter 11 Early Warning Strategy of Sparse Failures for Highly Reliable Products Based on the Bayesian Method 11.1 Introduction 11.2 Modelling 11.2.1 Dirichlet-Multinomial Model 11.2.2 Beta-Binomial Model 11.3 Early Warning Framework 11.4 Case Study 11.5 Conclusion Acknowledgement References Chapter 12 Fault Detection and Prognostics of Aero Engine by Sensor Data Analytics 12.1 Introduction 12.2 Principles of Aero Engine PHM 12.3 Degradation Diagnostics 12.3.1 Single-Channel Signal and Single Working Condition and Failure Modes 12.3.2 Multiple-Channel Signal and Single Working Condition and Failure Modes 12.3.3 Multiple-Channel Signal and Multiple Working Conditions and Failure Modes 12.4 Degradation Trend and RUL Prediction 12.4.1 Degradation Trend Prediction 12.4.2 RUL Prediction 12.5 Case Study 12.5.1 Evaluation of Aero Engine Degradation 12.5.2 Prediction Method of Aero Engine Degradation Trend 12.6 Conclusions References Chapter 13 Stochastic Modelling of Opportunistic Maintenance for Series Systems with Degrading Components 13.1 Introduction 13.2 Description of the System 13.3 Dependability and Performance Measures 13.3.1 Asymptotic Availability 13.3.2 Total Expected Operational Cost 13.4 Numerical Examples 13.5 Conclusions and Future Work Appendix References Chapter 14 On Censored and Truncated Data in Survival Analysis and Reliability Models 14.1 Introduction 14.2 Formulation – Marginal Non-parametric Likelihood 14.3 Formulation – Complete Non-Parametric Likelihood 14.3.1 The Law of Censoring and Truncation 14.3.1.1 Random Covering 14.3.1.2 The Mechanism of Censoring and Truncation 14.3.1.3 The Distribution Associated with the Random Covering 14.3.1.4 The Distribution of the Random Vector (L(x), R(x), L(z), R(z)) 14.3.1.5 The Distribution of the Random Vector (L(X), R(X), L(Z), R(Z)) 14.3.2 Estimation of the Density of Survival or Reliability 14.4 Example References Chapter 15 Analysis of Node Resilience Measures for Network Systems 15.1 Introduction: Background and the Main Purpose 15.2 The Generation of an Example Network 15.2.1 Network Topology 15.2.2 Cascading Failure 15.2.3 New Level Values of Nodes after Failure 15.3 The Matrix of Node Resilience (MNR) 15.4 The Relationship between the QRN and the Node Importance 15.5 The Iteration of MNRs and Trend Analysis in the Process of Iteration 15.6 Conclusions References Chapter 16 Reliability Analysis of General Purpose Parts for Special Vehicles Based on Durability Testing Technology 16.1 Introduction 16.2 Reliability Test 16.2.1 Reliability Test Method for Vehicle 16.2.2 Theory of Linear Fatigue Damage 16.2.3 Selection of Working Condition for Durability Test 16.2.4 Calculation of Acceleration Coefficient 16.2.5 Equivalent Stress-Strength Interference Model 16.3 Durability Test Analysis of Vehicle General Parts 16.3.1 Calculation of Cumulative Damage of Water Pump Bearing 16.3.2 Calculation of the Damage Amount Based on Bearing Durability Tests 16.4 Reliability Analysis of Bearing 16.4.1 Calculation of Equivalent Stress Distribution 16.4.2 Fatigue Strength Distribution 16.4.3 Reliability Calculation 16.5 Discussion 16.6 Conclusion Acknowledgements References Chapter 17 State of Health Prognostics of Lithium-Ion Batteries 17.1 Introduction 17.2 Prognostics of State of Health for Lithium-Ion Batteries 17.2.1 Battery Dataset 17.2.2 Charging Process 17.2.3 Discharge Process 17.2.4 Capacity Degradation 17.2.5 Prognostics of Battery Capacity Degradation 17.3 Gaussian Process Regression-Based Prognostics of State of Health for Lithium-Ion Batteries 17.4 Conclusion List of Abbreviations References Chapter 18 Life Prediction of Device Based on Material’s Micro-Structure Evolution by Means of Computational Materials Science 18.1 Introduction 18.2 Technology Roadmap 18.3 Cases Studies 18.3.1 The Grain Growth 18.3.1.1 Background 18.3.1.2 Phase Field Method 18.3.1.3 Simulation Results 18.3.1.4 Discussions 18.3.1.5 Conclusions 18.3.2 Dendrite Growth Simulation 18.3.2.1 Background 18.3.2.2 Monte Carlo Methods 18.3.2.3 Simulation Results 18.3.2.4 Discussion 18.3.2.5 Conclusions 18.4 Summary Acknowledgements References Chapter 19 Low-Cycle Fatigue Damage Assessment of Turbine Blades Using a Substructure-Based Reliability Approach 19.1 Introduction 19.2 Substructure-Based Distributed Collaborative MLS for Probabilistic Analysis 19.2.1 Moving Least Squares (MLS) 19.2.2 Distributed Collaborative Response Surface Method (DCRSM) 19.2.3 MLS-Based DCRSM, DCMLS 19.2.4 Substructure-Based DCMLS, SDCMLS 19.2.4.1 Basic Idea of SDCMLS 19.2.4.2 Substructure Method 19.2.4.3 Mathematical Model of SDCMLS 19.2.4.4 Advantages of SDCMLS 19.3 Probabilistic Strain-Life Relationships 19.4 Basics of Probabilistic LCF Damage Prediction 19.4.1 Preparation 19.4.2 Basic Principle 19.5 Probabilistic Low-Cycle Fatigue Life Prediction 19.5.1 Construction of SDMLSFs-I 19.5.2 Low-Cycle Fatigue Life Prediction 19.5.3 Model Comparison and Method Validation 19.5.3.1 Model Comparison 19.5.3.2 Method Validation 19.6 Probabilistic Analysis of LCF Damage 19.6.1 Reliability Analysis of LCF Damage 19.6.2 Sensitivity Analysis 19.7 Conclusions Acknowledgements Acronyms Notation References Chapter 20 Phased-Mission Modelling of Physical Layer Reliability for Smart Homes 20.1 Introduction 20.2 Dynamic Behaviour and Phased-Mission Modelling 20.2.1 Dynamic Behaviour 20.2.2 Dynamic Fault Tree Modelling 20.3 Phase-Modular Reliability Analysis 20.3.1 MDD-Based PMS Analysis 20.3.2 CTMC-Based PMS Reliability Analysis 20.4 Example Analysis and Results 20.4.1 Modularization 20.4.2 MDD-Based Analysis of the Static Part 20.4.3 CTMC-Based Analysis of Dynamic Part 20.4.4 Integration for Mission Reliability 20.5 Conclusion and Future Directions References Chapter 21 Comparative Reliability Analysis of Different Traction Drive Topologies for a Search-and-Rescue Helicopter 21.1 Introduction 21.2 Topologies of the Different Traction Drives 21.2.1 Topology of Conventional Traction Drive 21.2.2 Topologies of Hybrid-Electric Traction Drives 21.2.2.1 Serial Hybrid 1 21.2.2.2 Serial Hybrid 2 21.2.2.3 Parallel Hybrid 21.2.2.4 Combined Hybrid 21.2.3 Topologies of Full-Electric Traction Drives 21.2.3.1 Single-Line Electric 21.2.3.2 Dual-Electric 1 21.2.3.3 Dual-Electric 2 21.3 Markov Models and Comparisons of Reliability and Availability 21.3.1 Elements Description 21.3.1.1 Elements with Two States 21.3.1.2 Three-State Gas Turbine Engine Element 21.3.1.3 Elements in the Repairable Systems 21.3.2 Reliability Models for Different Propulsion Systems 21.3.2.1 Conventional System 21.3.2.2 Hybrid-Electric 21.3.2.3 Full-Electric 21.3.3 Failure Probability Comparison between Different Traction Drive Topologies 21.3.4 Availability Comparison for Different Propulsion System 21.3.5 Comparison between the Representative Propulsion Systems 21.4 Method for Element Sensitivity Analysis 21.5 Conclusion Acknowledgements References Chapter 22 Reliability and Fault Tolerance Assessment of Different Operation Modes of Air Conditioning Systems for Chemical Laboratories 22.1 Introduction 22.2 Multi-State Models of Chemical Laboratory Air Conditioning Systems 22.2.1 Description of the System 22.2.2 Description of the System’s Elements 22.2.3 Multi-State Models for an Air Conditioning System for a Chemical Laboratory 22.2.3.1 Working in the Regular Regime 22.2.3.2 Working in the Emergency Regime 22.2.4 Calculation of the Reliability Indices of an Air Conditioning System for a Chemical Laboratory 22.3 Conclusion References Chapter 23 Dependability Analysis of Ship Propulsion Systems 23.1 Introduction 23.2 Data and Methodology 23.3 Results 23.4 Conclusions and Discussion References Chapter 24 Application of Markov Reward Processes to Reliability, Safety, Performance Analysis of Multi-State Systems with Internal and External Testing 24.1 Introduction: Background and Driving Forces 24.2 Basic Relations of the Markov Reward Model 24.3 A Unified Approach to Calculation of RSP indices in MRM 24.4 Case Study I: Reliability and Safety Analysis of a Master-Slave Redundant System with an Internal Built-in Test 24.4.1 The Functioning of the Schema in the Case of Violations of Performability of One Module 24.4.2 The Functioning of the Schema in the Case of Violations of Performability of Two Modules 24.5 Case Study II: Performance Analysis of a System with an External Test 24.6 Conclusion Appendix References Chapter 25 Multi-Objective Maintenance Optimization of Complex Systems Based on Redundancy-Cost Importance 25.1 Introduction 25.2 Multi-Objective Maintenance Optimization Model for Complex Systems 25.3 The Theory of Redundancy-Maintenance Cost Importance 25.3.1 Birnbaum Importance 25.3.2 Redundant Importance 25.3.3 The Relation between System Reliability and Direct Maintenance Cost 25.3.4 The Relation between Reliability and Redundancy-Maintenance Cost 25.3.5 Redundancy-Maintenance Cost Importance 25.4 Multi-Objective Maintenance Optimization Algorithm Based on NSGA-II 25.4.1 NSGA-II in Maintenance Optimization 25.4.2 BI-NSGA-II and RMCI-NSGA-II in Maintenance Optimization 25.5 Numerical Experiments 25.5.1 Design of Experiments 25.5.2 Simulation Results 25.6 Conclusion Acknowledgements References Chapter 26 Which Replacement Maintenance Policy Is Better for Multi-State Systems?: Policy T or Policy N? 26.1 Introduction 26.2 Problem Statement and Some Basic Assumptions 26.3 Reliability Evaluation 26.4 Optimal Replacement Maintenance Policy 26.5 An Illustrative Example 26.6 Concluding Remarks References Chapter 27 Design of Multi-Stress Accelerated Life Testing Plans Based on D-Optimal Experimental Design 27.1 Introduction 27.2 Assumptions and Fisher Information Matrix 27.2.1 The Assumptions 27.2.2 The Fisher Information Matrix 27.3 Optimal Design of MALT 27.3.1 Find Test Points Based on D-Optimal Design 27.3.2 Unit Allocation 27.3.2.1 Optimal Designs under V-Optimality 27.3.2.2 Optimal Designs under D-Optimality 27.4 Case Study 27.4.1 Design Matrix Based on D-Optimal Design 27.4.2 Unit Allocation 27.4.2.1 Unit Allocation under V-Optimality 27.4.2.2 Unit Allocation under D-Optimality 27.5 Conclusions Acknowledgement References Chapter 28 An Extended Optimal Replacement Policy for a Simple Repairable Modelling 28.1 Introduction 28.2 System Description and Model Assumptions 28.3 Model Analysis 28.3.1 Policy (T,N) 28.3.2 New Policy (T,N) 28.4 Numerical Cases 28.4.1 Long-Run ACR Function 28.4.2 Sensitive Analysis 28.5 Conclusion List of Abbreviations References Appendix Index