دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: Second
نویسندگان: James Davidson
سری:
ISBN (شابک) : 9780192658807, 0192658808
ناشر:
سال نشر: 2021
تعداد صفحات: 808
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 4 مگابایت
در صورت تبدیل فایل کتاب Stochastic limit theory : an introduction for econometricians به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب نظریه حد تصادفی: مقدمه ای برای اقتصاددانان نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Stochastic Limit Theory: An Introduction for Econometricians Copyright Dedication Contents From Preface to the First Edition Preface to the Second Edition Mathematical Symbols and Abbreviations Common Usages Part I: Mathematics 1: Sets and Numbers 1.1 Basic Set Theory 1.2 Mappings 1.3 Countable Sets 1.4 The Real Continuum 1.5 Sequences of Sets 1.6 Classes of Subsets 1.7 Sigma Fields 1.8 The Topology of the Real Line 2: Limits, Sequences, and Sums 2.1 Sequences and Limits 2.2 Functions and Continuity 2.3 Vector Sequences and Functions 2.4 Sequences of Functions 2.5 Summability and Order Relations 2.6 Inequalities 2.7 Regular Variation 2.8 Arrays 3: Measure 3.1 Measure Spaces 3.2 The Extension Theorem 3.3 Non-measurability 3.4 Product Spaces 3.5 Measurable Transformations 3.6 Borel Functions 4: Integration 4.1 Construction of the Integral 4.2 Properties of the Integral 4.3 Product Measure and Multiple Integrals 4.4 The Radon–Nikodym Theorem 5: Metric Spaces 5.1 Spaces 5.2 Distances and Metrics 5.3 Separability and Completeness 5.4 Examples 5.5 Mappings on Metric Spaces 5.6 Function Spaces 6: Topology 6.1 Topological Spaces 6.2 Countability and Compactness 6.3 Separation Properties 6.4 Weak Topologies 6.5 The Topology of Product Spaces 6.6 Embedding and Metrization Part II: Probability 7: Probability Spaces 7.1 Probability Measures 7.2 Conditional Probability 7.3 Independence 7.4 Product Spaces 8: Random Variables 8.1 Measures on the Line 8.2 Distribution Functions 8.3 Examples 8.4 Multivariate Distributions 8.5 Independent Random Variables 9: Expectations 9.1 Averages and Integrals 9.2 Applications 9.3 Expectations of Functions of X 9.4 Moments 9.5 Theorems for the Probabilist’s Toolbox 9.6 Multivariate Distributions 9.7 More Theorems for the Toolbox 9.8 Random Variables Depending on a Parameter 10: Conditioning 10.1 Conditioning in Product Measures 10.2 Conditioning on a Sigma Field 10.3 Conditional Expectations 10.4 Some Theorems on Conditional Expectations 10.5 Relationships between Sub-?-fields 10.6 Conditional Distributions 11: Characteristic Functions 11.1 The Distribution of Sums of Random Variables 11.2 Complex Numbers 11.3 The Theory of Characteristic Functions 11.4 Examples 11.5 Infinite Divisibility 11.6 The Inversion Theorem 11.7 The Conditional Characteristic Function Part III: Theory of Stochastic Processes 12: Stochastic Processes 12.1 Basic Ideas and Terminology 12.2 Convergence of Stochastic Sequences 12.3 The Probability Model 12.4 The Consistency Theorem 12.5 Uniform and Limiting Properties 12.6 Uniform Integrability 13: Time Series Models 13.1 Independence and Stationarity 13.2 The Poisson Process 13.3 Linear Processes 13.4 Random Walks 14: Dependence 14.1 Shift Transformations 14.2 Invariant Events 14.3 Ergodicity and Mixing 14.4 Sub-?-fields and Regularity 14.5 Strong and Uniform Mixing 15: Mixing 15.1 Mixing Sequences of Random Variables 15.2 Mixing Inequalities 15.3 Mixing in Linear Processes 15.4 Sufficient Conditions for Strong and Uniform Mixing 16: Martingales 16.1 Sequential Conditioning 16.2 Extensions of the Martingale Concept 16.3 Martingale Convergence 16.4 Convergence and the Conditional Variances 16.5 Martingale Inequalities 17: Mixingales 17.1 Definition and Examples 17.2 Telescoping Sum Representations 17.3 Maximal Inequalities 17.4 Uniform Square-Integrability 17.5 Autocovariances 18: Near-Epoch Dependence 18.1 Definitions and Examples 18.2 Near-Epoch Dependence and Mixingales 18.3 Transformations 18.4 Adaptation 18.5 Approximability 18.6 NED in Volatility Part IV: The Law of Large Numbers 19: Stochastic Convergence 19.1 Almost Sure Convergence 19.2 Convergence in Probability 19.3 Transformations and Convergence 19.4 Convergence in Lp Norm 19.5 Examples 19.6 Laws of Large Numbers 20: Convergence in Lp Norm 20.1 Weak Laws by Mean Square Convergence 20.2 Almost Sure Convergence by the Method of Subsequences 20.3 Truncation Arguments 20.4 A Martingale Weak Law 20.5 Mixingale Weak Laws 20.6 Approximable Processes 21: The Strong Law of Large Numbers 21.1 Technical Tricks for Proving LLNs 21.2 The Case of Independence 21.3 Martingale Strong Laws 21.4 Conditional Variances and Random Weighting 21.5 Strong Laws for Mixingales 21.6 NED and Mixing Processes 22: Uniform Stochastic Convergence 22.1 Stochastic Functions on a Parameter Space 22.2 Pointwise and Uniform Convergence 22.3 Stochastic Equicontinuity 22.4 Generic Uniform Convergence 22.5 Uniform Laws of Large Numbers Part V: The Central Limit Theorem 23: Weak Convergence of Distributions 23.1 Basic Concepts 23.2 The Skorokhod Representation Theorem 23.3 Weak Convergence and Transformations 23.4 Convergence of Moments and Characteristic Functions 23.5 Criteria for Weak Convergence 23.6 Convergence of Random Sums 23.7 Stable Distributions 24: The Classical Central Limit Theorem 24.1 The I.I.D. Case 24.2 Independent Heterogeneous Sequences 24.3 Feller’s Theorem and Asymptotic Negligibility 24.4 The Case of Trending Variances 24.5 Gaussianity by Other Means 24.6 ?-Stable Convergence 25: CLTs for Dependent Processes 25.1 A General Convergence Theorem 25.2 The Martingale Case 25.3 Stationary Ergodic Sequences 25.4 The CLT for Mixingales 25.5 NED Functions of Mixing Processes 26: Extensions and Complements 26.1 The CLT with Estimated Normalization 26.2 The CLT for Linear Processes 26.3 The CLT with Random Norming 26.4 The Multivariate CLT 26.5 The Delta Method 26.6 Law of the Iterated Logarithm 26.7 Berry–Esséen Bounds Part VI: The Functional Central Limit Theorem 27: Measures on Metric Spaces 27.1 Separability and Measurability 27.2 Measures and Expectations 27.3 Function Spaces 27.4 The Space C 27.5 Measures on C 27.6 Wiener Measure 28: Stochastic Processes in Continuous Time 28.1 Adapted Processes 28.2 Diffusions and Martingales 28.3 Brownian Motion 28.4 Properties of Brownian Motion 28.5 Skorokhod Embedding 28.6 Processes Derived from Brownian Motion 28.7 Independent Increments and Continuity 29: Weak Convergence 29.1 Weak Convergence in Metric Spaces 29.2 Skorokhod’s Representation 29.3 Metrizing the Space of Measures 29.4 Tightness and Convergence 29.5 Weak Convergence in C 29.6 An FCLT for Martingale Differences 29.7 The Multivariate Case 30: Càdlàg Functions 30.1 The Space D 30.2 Metrizing D 30.3 Billingsley’s Metric 30.4 Measures on D 30.5 Prokhorov’s Metric 30.6 Compactness and Tightness in D 30.7 Weak Convergence in D 31: FCLTs for Dependent Variables 31.1 Asymptotic Independence 31.2 NED Functions of Mixing Processes 1 31.3 NED Functions of Mixing Processes 2 31.4 Nonstationary Increments 31.5 Generalized Partial Sums 31.6 The Multivariate Case 32: Weak Convergence to Stochastic Integrals 32.1 Weak Limit Results for Random Functionals 32.2 Stochastic Integrals 32.3 Convergence to Stochastic Integrals 32.4 Convergence in Probability to ??? Bibliography Index