دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1 نویسندگان: Anil V. Karnik, Mohammed Hasan سری: ISBN (شابک) : 0128210621, 9780128210628 ناشر: Elsevier سال نشر: 2021 تعداد صفحات: 600 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 46 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Stereochemistry: A Three-Dimensional Insight به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب استریوشیمی: بینش سه بعدی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Stereochemistry Copyright Contents About the authors Foreword Preface 1 Basic concepts of structure and stereochemistry 1.1 Introduction 1.2 A brief history 1.3 Molecular geometry 1.3.1 Van der Waals’ radius 1.3.2 Bond length 1.3.3 Bond angle 1.3.4 Dihedral angle 1.4 Isomers 1.4.1 Conformational isomers 1.4.2 Configuration and configurational isomers 1.5 Projection formulae 1.5.1 Fischer projection 1.5.2 Newman projection 1.5.3 Sawhorse projection 1.5.4 Inter-conversion of Fischer projection to Newman projection or Sawhorse projection 1.5.5 Flying wedge/zig-zag projection formula 1.5.6 Inter-conversion of Fischer projection and zig-zag projection 1.6 Summary Questions and Problems References 2 Symmetry and point groups 2.1 Introduction 2.2 Symmetry elements and symmetry operations 2.2.1 Simple or proper axis of symmetry (Cn) and proper rotational operations (Cnk) 2.2.2 Plane of symmetry (σ) – Operation of reflection (σ) 2.2.3 Centre of symmetry (i) operation of inversion (i) 2.2.4 Alternating or rotation-reflection axis of symmetry (Sn) 2.3 Point groups and their classification 2.3.1 Linear molecules with high symmetry (Special group) 2.3.2 Nonlinear molecules with high symmetry and molecules with Platonic group structures 2.3.3 Nonlinear molecules with high Cn axis (without platonic group molecules) 2.3.4 Nonlinear molecules with absence of Cn, axis n≥2 2.4 The chiral compounds and the difference between asymmetry and dissymmetry 2.5 Symmetry number (σ) 2.5.1 Practical method to assign the point group of given organic compound 2.6 Summary Questions and Problems References 3 Elements of chirality and chiral stereoisomerism 3.1 Introduction 3.2 Molecules with central chirality 3.2.1 Configurational descriptors for molecules with central chirality 3.2.1.1 The D-L system 3.2.1.2 The R/S system 3.3 Molecules with two or more chiral centres 3.3.1 Constitutionally unsymmetrical chiral molecules 3.3.1.1 Erythro and Threo 3.3.1.2 Pref and Parf 3.3.1.3 Like (l) and unlike (u) 3.3.1.4 Anti and Syn notations 3.3.1.5 Brewster’s system 3.3.2 Stereoisomerism in constitutionally symmetrical chiral molecules 3.3.3 Stereoisomerism in cyclic molecules 3.4 Molecules with the presence of chiral axis 3.4.1 Assignment of configurational descriptors to molecules with presence of chiral axis 3.4.2 Allenes 3.4.3 Alkylidene cycloalkanes/Hemispiranes 3.4.4 Spiranes 3.4.5 Atropisomerism 3.4.6 Atropisomerism of biaryls, restricted rotation around sp2-sp2, C–C bond 3.4.7 Assignment of configurational descriptors to chiral biphenyls 3.4.8 Bridged biphenyls 3.5 Planar Chirality 3.5.1 Assignment of configurational descriptor to molecules with chiral plane 3.5.2 Cyclophanes and ansa compounds 3.5.3 Trans-Cyclooctene 3.5.4 Chiral ferrocenes 3.6 Helicity 3.7 Cyclostereoisomerism 3.8 Summary Questions and Problems References 4 Chiroptical properties: Origin and applications 4.1 Introduction 4.2 Optical activity 4.2.1 Origin of the optical activity 4.2.2 Circular Birefringence 4.2.3 Dissymmetric compounds and optical activity 4.2.4 Circular dichroism 4.3 Optical rotatory dispersion curves (ORD) 4.3.1 Cotton effect curves 4.3.2 The Cotton effect circular dichroism and optical rotatory dispersion curves 4.3.3 Applications of the plain optical rotatory dispersion curves 4.3.4 Applications of the Cotton effect optical rotatory dispersion/circular dichroism curves 4.3.5 Empirical and semiempirical rules for conformational and configurational studies 4.4 The axial α-haloketone rule and its applications 4.5 Octant rule 4.5.1 Applications of the octant rule 4.6 Inherently symmetric or inherently dissymmetric optically active chromophores 4.7 Helicity rules for inherently chiral chromophores 4.7.1 α, β-Unsaturated ketone or enone 4.7.2 1,3-Conjugated dienes 4.7.3 Biaryls 4.7.4 Helicenes 4.8 Lowe’s rule for allenes 4.9 Exciton coupling and dibenzoate chirality rule 4.10 Summary Questions and Problems References 5 Configurational analysis 5.1 Introduction 5.2 Methods for the determination of absolute configuration 5.2.1 Basic terminology of resonant X-ray scattering 5.2.2 Determination of absolute configuration using resonant X-ray scattering 5.2.3 Determination of absolute configuration by use of crystalline sponge-X-ray diffraction method 5.2.4 Crystal morphological changes for assignment of absolute configuration 5.2.5 Determination of absolute configuration using chiroptical methods 5.3 Correlative methods for determination of configurations 5.3.1 Chemical correlative methods of determination of configurations 5.3.1.1 Correlation of configuration without affecting the bonds to the chiral centre 5.3.1.2 Method of diastereoisomers 5.3.1.3 Correlation of configuration via use of concerted reactions and reactions with known stereochemical outcome 5.3.1.4 Correlation of configuration using predictable symmetry properties 5.3.2 Correlative methods based on comparison of optical rotations 5.3.2.1 Rule of shift 5.3.2.2 Rule of optical superposition 5.3.2.3 Hudson’s rule of isorotation 5.3.2.4 Mills’ rule 5.3.3 Quasi-racemate formation between two different molecules 5.3.4 NMR Methods 5.3.4.1 Use of CSA for the assignment of absolute configuration 5.3.4.2 Use of CDA for the assignment of absolute configuration 5.3.4.3 Use of CSR for the assignment of absolute configuration 5.4 Assignment of configuration based on asymmetric synthesis 5.4.1 Cram’s Rule 5.4.2 Prelog’s rule 5.4.3 Sharpless asymmetric epoxidation 5.5 Horeau’s method of assignment of configuration based on kinetic resolution 5.6 ‘Stand-alone’ methods for determination of configuration 5.6.1 Assignment of configuration to an alkylidenecycloalkane via stereoselective synthesis 5.6.2 Assignment of absolute configuration to (-)-trans-cyclooctene 5.6.3 Determination of absolute configuration of allenes 5.6.3.1 Use of stereoselective (concerted) reaction for assignment of configuration 5.6.3.2 Conversion of an enantiomer of allene to compound of known configuration 5.6.4 Assignment of absolute configuration to a spiro compound 5.6.5 Assignment of absolute configuration to a biphenyl derivative 5.7 Methods to distinguish between configurations of diastereoisomers 5.7.1 Auwer’s Skita Rule 5.7.2 UV-vis spectroscopy 5.7.3 IR Spectroscopy 5.7.4 X-ray diffraction studies 5.7.5 NMR Spectroscopy 5.7.5.1 Chemical shifts 5.7.5.2 Coupling constant 5.7.5.3 NOESY experiments 5.8 Chemical method 5.9 Summary Questions and Problems References 6 Racemates: Properties and methods of resolution 6.1 Introduction: Properties of enantiomers and racemates 6.1.1 Melting point phase diagrams 6.1.2 Crystal shape/morphology 6.1.3 Density of racemic modifications in solid state 6.1.4 Solubility behaviour of racemic modifications 6.1.5 IR spectroscopy 6.1.6 NMR Spectroscopy 6.1.7 X-ray diffraction studies 6.1.8 Chromatographic behaviour 6.1.9 Vapour Pressure 6.2 Resolution of racemates 6.2.1 Resolution of racemic modification exhibiting conglomerate behaviour: Spontaneous crystallisation 6.2.2 Formation of diastereomeric salts or compounds followed by preferential crystallisation 6.2.3 Resolution though formation of diastereomeric complexes 6.2.4 Chromatographic resolutions 6.2.5 Resolution of racemates via equilibrium asymmetric transformation 6.2.6 Kinetic Resolutions of racemates 6.2.7 Dynamic Kinetic Resolutions 6.3 Racemisation processes 6.3.1 Formation of a resonance stabilized carbanions 6.3.2 Involvement of tautomeric species 6.3.3 Racemisations involving a stable carbocation intermediate 6.3.4 Racemisations involving a stable carbon-free radical intermediate 6.3.5 Opposite reactions occurring simultaneously 6.3.6 Racemisation encountered in DKR 6.3.7 Rotation around single bond 6.4 Summary Questions and Problems References 7 Conformation of acyclic molecules 7.1 Introduction 7.2 Conformation 7.2.1 Torsional strain 7.2.2 Notations for torsion angle, the Klyne–Prelog method 7.3 Estimating strain energy 7.3.1 Cause of the potential energy barriers 7.4 Study of conformations due to rotation about sp3–sp3 single bond 7.4.1 Rotations around C–C bond 7.4.1.1 Conformations of ethane 7.4.1.2 Conformations of propane 7.4.1.3 Conformations of n-butane 7.4.1.4 Branched alkanes 7.4.2 Alkanes with polar substituents 7.4.3 Rotation around C–N single bond 7.4.4 Rotation around C–P single bond 7.4.5 Rotation around C–O single bond 7.4.6 Conformations due to rotation around sp3–sp2 single bond 7.4.7 Conformations due to rotation around sp2–sp2 single bond 7.5 Spectral/analytical/theoretical means of internal rotation studies 7.5.1 Molecular mechanics and quantum mechanical approaches to estimate energies of molecules in different arrangements 7.5.2 Dipole moment 7.5.3 Use of NMR and ESR techniques 7.5.4 Microwave spectroscopy 7.5.5 Electron diffraction studies 7.5.6 X-ray diffraction studies 7.5.7 Infrared and Raman spectroscopy 7.6 Conformation and chemical reactivity 7.6.1 Curtin–Hammett principle 7.6.2 Effect of conformation on kinetic and/or stereochemical outcome of chemical reactions 7.6.2.1 Stereoselective 1,2-elimination reactions 7.6.2.2 Pyrolytic eliminations 7.6.2.3 Neighbouring Group Participation reaction 7.7 Summary Questions and Problems References 8 Conformations of cyclic, fused and bridged ring molecules 8.1 Introduction 8.2 Cyclohexane conformations 8.2.1 The chair conformation 8.2.2 Ring inversion in cyclohexane 8.2.3 Nonchair conformations of cyclohexane 8.2.3.1 Monosubstituted cyclohexanes 8.2.4 Cyclohexane derivatives with two or more substituents 8.2.4.1 1,1-disubstituted cyclohexanes 8.2.4.2 Non-geminal disubstituted cyclohexane derivatives 8.2.4.3 1,2-dimethylcyclohexanes 8.2.4.4 1,3-dimethyl cyclohexanes 8.2.4.5 1,4-dimethyl cyclohexanes 8.2.4.6 Conformational peculiarities exhibited by some di-substituted cyclohexanes 8.3 Cyclohexanone conformational analysis 8.4 Alkylidenecyclohexane conformation 8.5 Cyclohexene conformation 8.6 Cyclopropane conformation 8.7 Cyclobutane conformations 8.8 Normal ring compounds 8.8.1 Cyclopentane conformation 8.8.2 Cycloheptane conformation 8.9 Medium-sized carbocycles 8.9.1 Cyclooctane conformations 8.9.2 Cyclononane conformations 8.9.3 Cyclodecane conformations 8.10 Large ring carbocycles 8.11 Size and conformation-based trends in alicyclic compounds 8.11.1 Accommodation of anti butane unit 8.11.2 Accommodation of trans double bond 8.11.3 Transannular effects 8.11.4 I-strain concept 8.12 Components of heterocyclic rings conformations 8.12.1 Ring Inversion barriers in heterocycles 8.12.2 Pyramidal inversion 8.12.3 Anomeric effect 8.12.4 Intramolecular hydrogen bonding 8.12.5 1,3-Syn-axial interactions 8.13 Fused ring compounds 8.13.1 Decalins or bicyclo[4.4.0]decane 8.13.2 Cis-decalin 8.13.2.1 Geometry 8.13.2.2 Symmetry properties 8.13.2.3 Entropy 8.13.2.4 Enthalpy 8.13.2.5 Ring inversion barrier 8.13.3 Trans-decalin 8.13.3.1 Geometry 8.13.3.2 Symmetry properties 8.13.3.3 Entropy 8.13.3.4 Enthalpy 8.13.3.5 Ring-inversion 8.14 Introduction of angular methyl groups in cis and -trans-decalins 8.15 The octahydronaphthalene or octalins 8.16 Bicyclo[4.3.0]nonane or hydrindane 8.17 Bicyclo[3.3.0]octane or octahydropentalene 8.18 Fused polycyclic compounds 8.18.1 Perhydrophenanthrene 8.18.2 Perhydroanthracenes 8.18.3 Steroids stereochemistry 8.19 Bridged-ring compounds 8.19.1 Bicyclo[1.1.1]pentane 8.19.2 Bicyclo[2.1.1]hexane 8.19.3 Bicyclo[2.2.1]heptane 8.19.4 Bicyclo[2.2.2]octane 8.19.5 Bicyclo[3.2.1]octane 8.19.6 Bicyclo[3.3.1]nonane 8.19.7 Tricyclo[1.1.1.0]pentane or [1.1.1]propellane 8.19.8 Adamantane or tricyclo[3.3.1.13,7]decane 8.19.9 The bicyclo[2.2.1]heptyl and bicyclo[2.2.2]octyl systems and their contribution to nonclassical carbocation concept 8.19.10 Bredt’s rule 8.20 Conformation and chemical reactivity of cyclic compounds 8.20.1 Reactions influenced by steric effects 8.20.2 Systems where equatorially substituted conformer reacts faster 8.20.3 Systems where axially substituted conformer reacts faster 8.20.4 Reactions where stereo-electronic effects operate 8.20.4.1 E2 reactions 8.20.4.2 Pyrolytic ‘syn’ eliminations 8.20.4.3 Grob’s fragmentation 8.20.5 Molecular Rearrangements 8.20.5.1 Rearrangements of 2-aminocyclohexanol derivatives 8.20.5.2 Epoxide ring formation 8.20.5.3 Furst-Plattner rule and the epoxide ring opening 8.20.5.4 Electrophilic addition to the cyclohexene 8.21 Summary Questions and Problems References 9 Prochirality 9.1 Introduction 9.2 Topicity, the relationship between two or more homomorphic ligands and faces 9.2.1 Homotopic ligands and faces 9.2.1.1 Substitution/addition criteria 9.2.1.2 Symmetry criteria 9.2.2.1 Stereoheterotopic ligands and faces 9.2.2.1.1 Enantiotopic ligands and faces 9.2.2.1.1.1 Substitution/addition criteria 9.2.2.1.1.2 Symmetry criteria 9.2.2.1.2 Diastereotopic ligands and faces 9.2.2.1.2.1 Substitution/addition criteria 9.2.2.1.2.2 Symmetry criteria 9.3 Nomenclature system for stereoheterotopic ligands 9.3.1 Stereodescriptors for enantiotopic ligands 9.3.2 Diastereotopic ligands at pro-pseudoasymmetric centre 9.3.3 Stereodescriptors for diastereotopic ligands 9.3.4 Enantiotopic ligands in molecules with pro-chiral axis 9.3.5 Enantiotopic ligands in molecules with pro-chiral plane 9.3.6 Stereo-heterotopic ligands in molecules with pro-stereogenic units other than pro-chiral units 9.3.7 Stereodescriptors for enantiotopic faces 9.3.8 Stereodescriptors for diastereotopic faces 9.4 Discrimination/recognition of stereo-heterotopic ligands and faces by bio-catalysts 9.5 Discrimination/recognition of stereo-heterotopic ligands and faces by chiral chemical reagents/catalysts 9.6 Recognition of stereo-heterotopic ligands by NMR 9.7 Summary Questions and Problems References 10 Diastereomeric transition states and stereoselectivity 10.1 Introduction 10.2 Stereoselective processes 10.2.1 Stereospecific reactions 10.2.2 Asymmetric synthesis 10.2.3 Steric and conformational effects in stereoselective processes 10.3 The Asymmetric Aldol condensation reaction 10.3.1 Substrate-controlled Aldol reactions 10.3.2 Chiral reagent (enolate) controlled Aldol reactions 10.3.3 Double stereo-differentiation 10.4 Sharpless epoxidation 10.5 Jacobsen-Katsuki epoxidation 10.6 Asymmetric dihydroxylation (AD) 10.7 Asymmetric Aminohydroxylation (AA) 10.8 Enantioselective reduction of pro-chiral carbonyl compounds 10.8.1 Chiral LiAlH4 reagents 10.8.2 Enantioselective reduction of prochiral ketones using BINAL-H 10.8.3 Chiral Borane reagents for enantioselective reductions of prochiral ketones 10.8.4 Enantioselective reductions of functionalised carbonyl compounds using Ru-BINAP catalyst 10.9 Homogeneous asymmetric catalytic reductions of prochiral alkene derivatives 10.10 Allylamine to enamine asymmetric isomerisation 10.11 Enantioselective reduction of C=N moiety via chiral cyclic hydrazone, synthesis of α-amino acids 10.12 Asymmetric Diels-Alder reaction 10.12.1 Chiral dienophiles for asymmetric Diels-Alder reaction 10.12.2 Chiral dienes for asymmetric Diels-Alder reaction 10.12.3 Chiral catalysts in asymmetric Diels-Alder reactions 10.13 Chiral organo-catalysis 10.14 Summary Questions and Problems References Further Reading 11 Chiral analytical chemistry 11.1 Introduction 11.2 Chiral analysis terminology 11.3 Chiroptical methods for determination of enantiomer composition 11.4 NMR for determination of enantiomer composition 11.4.1 Chiral derivatising agents for determination of enantiomer composition 11.4.2 Chiral solvating agents for determination of enantiomer composition 11.4.3 Chiral shift reagents for determination of enantiomer composition 11.5 Chromatographic techniques for determination of enantiomer composition 11.5.1 Chiral derivatising agents for the indirect gas chromatography method 11.5.2 Chiral derivatising agents for the indirect high-performance liquid chromatography method 11.5.3 Use of chiral stationary phase (CSP) for determination of enantiomer composition 11.5.4 Use of chiral mobile phase for determination of enantiomer composition 11.6 Use of capillary electrophoresis for determination of enantiomer composition 11.7 Enantiomer recognition and evaluation of chiral sensors 11.7.1 Basics of chiral recognition and optical responses 11.7.2 Ultraviolet spectroscopy–based chirality sensor 11.7.3 Fluorescence spectroscopy–based chirality sensor 11.7.4 Circular dichroism (CD) spectroscopy–based chirality sensor 11.7.5 Determination of host-guest stoichiometry 11.7.6 Determination of binding constant 11.7.7 Benesi–Hildebrand method 11.7.8 Stern–Volmer method 11.8 Summary Questions and Problems References 12 Pericyclic reactions 12.1 Introduction 12.2 The atomic orbitals and the molecular orbitals 12.3 The conservation of symmetry approach or the correlation diagram approach 12.3.1 Correlation diagram method for electrocyclic reactions 12.3.2 Correlation diagram for the cyclo-addition reactions 12.4 The frontier molecular orbitals approach 12.4.1 Application of FMO approach to cyclo-addition reactions 12.4.1.1 The (4n+2) π electron cyclo-addition reactions 12.4.1.2 The 4n π electron cyclo-addition reactions 12.4.2 The FMO approach for the electrocyclic reactions 12.4.3 The application of FMO approach to sigmatropic rearrangements 12.4.3.1 Rearrangements involving the H-shift 12.4.3.2 Rearrangements involving the C-shift 12.4.3.2.1 [1,3]-Carbon migrations 12.4.3.2.2 [1,5]-Carbon migrations 12.5 The rates of Diels-Alder reactions 12.6 Role of coefficients on selectivity 12.7 1,3-Dipolar cycloaddition reactions 12.8 Summary Questions and Problems References Solutions and keys to the problems Chapter 1: Basic concepts of structure and stereochemistry Chapter 2: Symmetry and point groups Chapter 3: Elements of chirality and chiral stereoisomerism Chapter 4: Chiroptical properties: origin and applications Chapter 5: Configurational analysis Chapter 6: Racemates: properties and methods of resolution Chapter 7: Conformation of acyclic molecules Chapter 8: Conformations of cyclic, fused and bridged ring molecules Chapter 9: Prochirality Chapter 10: Diastereomeric transition states and stereoselectivity Chapter 11: Chiral analytical chemistry Chapter 12: Pericyclic reactions Index