دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [3 ed.]
نویسندگان: Kunihiro Suzuki
سری: Mathematics research developments
ISBN (شابک) : 9781536151251, 1536151254
ناشر: Nova Science Publishers, Inc
سال نشر: 2019
تعداد صفحات: [490]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 8 Mb
در صورت تبدیل فایل کتاب Statistics. Volume 3, Categorical and time dependent data analysis به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب آمار. جلد 3، تجزیه و تحلیل داده های مقوله ای و وابسته به زمان نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Contents Preface Chapter 1 Customer Satisfaction Analysis Abstract 1. Introduction 2. Questionnaire 3. Fundamental Parameters 4. Correlation Factor Testing 5. Normalization of the Variables 6. Improve Requested and Contributed Items 7. CS Correlation Factor 8. Target Value for Satisfactions of Explanatory and Objective Variables 9. Analysis for Sub Group 10. CS Analysis Using Multiple Regression 11. Interaction between Explanatory Variables 12. Extended Normalized Correlation Factor 13. Treatment of Correlation Factor 14. Summary Chapter 2 Independent Factor Analysis Abstract 1. Introduction 2. Questionnaire 3. Independent Value 4. Testing 5. Independent Factor 6. Adjust Residuals 7. Level Achievement Ratio 8. Determination of Item Based on CS Analysis 8.1. Normalization 8.2. Improve Requested and Contributed Items 9. CS Correlation Factor 10. Expected Objective Variable Improvement with Improving Explanatory Value 10.1. Two Levels (Objective Variable)-Two Levels (Explanatory) 10.2. General Form for Expected Objective Variable Level 11. Analysis for Sub Group Summary Chapter 3 Statistical Testing and Predictions Abstract 1. Introduction 2. Hypothesis 3. Level of Significance 4. P Points for Various Probability Distributions 5. Testing for One Variable 5.1. One Sample Data Testing for Known Variance Hypothesis Evaluation and Judgment Prediction 5.2. Sample Average Testing for Known Variance Hypothesis Evaluation and Judgment Prediction 5.3. Sample Average Testing for Unknown Variance Hypothesis Evaluation and Judgment Prediction (Example) 5.4. Sample Variance Testing for Known Variance Hypothesis Evaluation and Judgment Prediction 5.5. Outliers Testing 5.6. Population Ratio Testing with Restored Extraction Hypothesis Evaluation and Judgment Prediction 5.7. Population Ratio Testing with Non-Restored Extraction Hypothesis Evaluation and Judgment Prediction 6. Testing for Two Variables 6.1. Testing of Difference Between Population Averages: Is Known Hypothesis Evaluation and Judgment Prediction 6.2. Testing of Difference between Population Averages: Is Unknown and the Variances Are Assumed to Be the Same Hypothesis Evaluation and Judgment Prediction 6.3. Testing of Difference between Population Averages: Is Unknown and the Variances Are Assumed to Be Different Hypothesis Evaluation and Judgment Prediction 6.4. Testing of Difference between Population Averages: Is Unknown with Paired Data Hypothesis Evaluation and Judgment Prediction 6.5. Testing of Difference between Population Ratio with Restored Extraction Hypothesis Evaluation and Judgment Prediction 6.6. Testing of Difference between Population Ratio with Non-Restored Extraction Hypothesis Evaluation and Judgment Prediction 6.7. Testing of Ratio of Two Population’s Variances: and Are Known Hypothesis Evaluation and Judgment Prediction 6.8. Testing of Ratio of Two Population’s Variances and Are Unknown Hypothesis Evaluation and Judgment Prediction 7. Testing for Correlation Factors 7.1. Correlation Factor Testing Hypothesis Evaluation and Judgment Prediction 7.2. Correlation Factor Testing for Reference One Hypothesis Evaluation and Judgment Prediction 7.3. Two Correlation Factor Testing Hypothesis Evaluation and Judgment Prediction 8. Testing for Regression Hypothesis Evaluation and Judgment Prediction 9. Testing for Multi Regression Hypothesis Evaluation and Judgment Prediction 10. Testing for Effectiveness of Variances in Multi Regression Hypothesis Evaluation and Judgment Prediction 11. Testing for Variance Analysis 11.1. One Way Analysis Hypothesis Evaluation and Judgment Prediction 11.2. Two Way Analysis without Repeated Data Hypothesis Evaluation and Judgment Prediction 11.3. Two Way Analysis with Repeated Data Hypothesis Evaluation and Judgment Prediction 11.4. Independent Factor Analysis Hypothesis Evaluation and Judgment Prediction Chapter 4 Score Evaluation Abstract 1. Introduction 2. Evaluation of the Five Subjects 3. Score Evaluation Considering Standard Deviation Summary Chapter 5 AHP (Analytic Hierarchy Process) Abstract 1. Introduction 2. AHP Process 3. Pair Comparison Method 3.1. Pair Comparison Table 3.2. Weight Evaluation Based on Geometric Average 3.3. Eigenvector Method 4. Consistency Check of Pair Comparison Summary Chapter 6 Quantification Theory I Abstract 1. Introduction 2. One Variable Analysis 3. Analysis with Many Variables 4. Mixture of Numerical and Categorical Data for Explanation Variables Summary Chapter 7 Quantification Theory II Abstract 1. Introduction 2. Discriminant Analysis with One Categorical Data Healthy Member Data Disease Member Data 3. Discriminant Analysis with Two Categorical Data Summary Chapter 8 Quantification Theory III (Correspondence Analysis) Abstract 1. Introduction 2. Basic Concept of Quantification Theory III 3. General Form Data for Correspondence Analysis Summary Chapter 9 Quantification Theory IV Abstract 1. Introduction 2. Analytical Process Summary Chapter 10 Survival Time Probability Abstract 1. Introduction 2. Survival Probability 3. Different Expression of Survival Probability 4. Survival Probability with Incomplete Data (Kaplan-Meier Predictive Method) 5. Regression for Survival Probability 5.1. Exponential Function Regression 5.2. Weibull Function Regression 6. Average and Standard Deviation of Survival Time 7. Hazard Model 7.1. Definition of Hazard Function 7.2. Analytical Expression for Hazard Function (Exponential Approximation) 7.3. Analytical Expression for Hazard Function (Weibull Function) 8. Testing of Two Group Survival Time Summary Chapter 11 Population Prediction Abstract 1. Introduction 2. Population in Future Summary Chapter 12 Random Walk Abstract 1. Introduction 2. Fundamental Analysis for Random Walk 2.1. General Theory for Evaluating a Case Number of Path 2.2. Principle of Symmetry 2.3. The Path Number Where All Points Except for the Starting Point Is Positive 2.4. The Number of Path from to Where 2.5. The Path Number from to Where 3. The Probability That a Person Is in Positive Region 3.1. The Probability Where the Path Starts from to 3.2. The Probability That a Person Reaches Axis at 2n Trial for the First Time 3.3. The Probability That a Person Enters a Negative Region at Time Step for the First Time 3.4. The Probability That a Person Does Not Cross X Axis up to Time Step 3.5. The Probability That a Person Does Not Enter Negative Region up to Time Steps 3.6. The Probability That the Length of Is in Positive Region of 2n Length Path 4. Return Frequency to the Origin Summary Chapter 13 A Markov Process Abstract 1. Introduction 2. A Markov Process for Random Walk 3. Transition Probability for Random Walk 4. Transition Matrix Elements 4.1. General Discussion for Matrix Elements 4.2. Supply Source 4.3. Supply Source Included in the Transition Matrix 4.4. Vanishing Monitor 4.5. Constant Flux 4.6. Initial Condition 5. Various Examples 5.1. Promotion of University Student Grade 5.2. Promotion of University Grade in the Steady State 5.3. Population Problem 5.4. Share Rate of a Product 5.5. Repeat Customer 5.6. Queue with Single Teller Window Let us consider a status of 0. We consider the status 1. We consider status 6. 5.7. Queue with Multi Teller Windows Let us consider the status of 0. We consider the status 1. We consider the status 2. We consider the status 3. We consider the status 6. 5.8. Blood Type Transition 6. Status after Long Time Steps 6.1. Status after N Step 6.2. Steady State 6.3. Vanishing Process 7. A Network Loop 7.1. Network Matrix 7.2. A Network Path with a Loop Summary Chapter 14 Random Number Abstract 1. Introduction 2. Characteristics of Random Number Characteristic 1: Principle of Equal A Priori Probabilities Characteristic 2: No Regularity 3. Uniform Random Number Series 4. Numerical Uniform Random Number Generation Method 5. Testing of Random Number Series 5.1. Testing of Equal Priori Probabilities 5.2. Testing of No Regularity Combination Testing Runs Testing 6. Random Number Series Associated with Various Probability Distributions 7. Inverse Type Random Number Generation for General Probability Function 8. Random Number Series for Exponential Distribution 9. Random Number Series for Poisson Distribution 10. Random Number Series for a Normal Distribution 11. Random Number Series for Natural Numbers between 1 and N 12. Two Random Numbers That Follow Normal Distributions with a Correlation Factor of Summary Chapter 15 Matrix Operation Abstract 1. Introduction 2. Definition of a Matrix 3. Sum of a Matrix 4. Product of a Constant Number and a Matrix 5. A Product of Two Matrices Related to a Simultaneous Equations 6. Transverse Matrix 7. Solution of a Simultaneous Equations 8. Gauss Elimination Method 8.1. Gauss Elimination Method and LU Decomposition 8.2. LU Division 8.3. Inverse Matrix Derivation Utilizing LU Division 9. Determinant of a Matrix 10. Numerical Evaluation of Eigenvalue 10.1. Relationship between Matrix and Eigenvector 10.2. Power Method 11. Jacobi Method for Symmetrical Matrix 12. n-th Product of Matrix Appendix 1 Related Mathematics 1. Summation and Product 2. A Gamma Function and a Beta Function 2.1. Definition of a Gamma Function 2.2. A Gamma Function and a Factorial 2.3. Evaluation of 2.4. A Gamma Function Where x < 0 2.5. A Product of a Gamma Function of 2.6. A Binominal Factor for 2.7. A Beta Function 3. Gauss Integration 3.1. Normal Gauss Integration 3.2. Modified Gauss Integration 4. An Error Function 5. An Integral Area of Converted Variables 6. A Marginal Probability Distribution 7. Integration by Parts 8. Derivatives of Inverse Trigonometric Functions 9. A Derivative Function 10. Vector Derivative 11. Symmetry of the Matrix 12. A Stirling’s Formula Step 1: A Wallis’ formula Step 2: Step 3: 13. Trigonometric Functions Appendix 2 Summary of Probability Distributions and Their Moments Abstract 1. Introduction 2. General Relationships 3. Functions, Generating Functions, and Moments Parameters for Various Probability Distributions 3.1. A Uniform Distribution Graphics Probability Function Generating Function Moments Central Moments Moment Parameters Peak Position Comment 3.2. A Binomial Distribution Graphics Probability Function Generating Function Moments Central Moments Moment Parameters Peak Position Comment 3.3. A Multinomial Distribution Graphics Probability Function Generating Function Moments Central Moments Moment Parameters Peak Position Comment 3.4. A Negative Binomial Distribution Graphics Probability Function Generating Function Moments Central Moments Moment Parameters Peak Position Comment 3.5. A Beta Distribution Graphics Probability Function Generating Function Moments Central Moments Moment Parameters Peak Position Comment 3.6. A Dirichlet Distribution Graphics Probability Function Generating Function Moments Central Moments Moment Parameters Peak Position Comment 3.7. A Gamma Distribution Graphics Probability Function Generating Function Moments Central Moments Moment Parameters Peak Position Comment 3.8. An Inverse Gamma Distribution Graphics Probability Function Generating Function Moments Central Moments Moment Parameters Peak Position Comment 3.9. A Poisson Distribution Graphics Probability Function Generating Function Moments Central Moments Moment Parameters Peak Position Comment 3.10. A Geometric Distribution Graphics Probability Distribution Generating Function Moments Central Moments Moment Parameters Peak Position Comment 3.11. A Hypergeometric Distribution Graphics Probability Distribution Generating Function Moments Central Moments Moment Parameters Peak Position Comment 3.12. A Normal Distribution Graphics Probability Distribution Generating Function Moments Central Moments Moment Parameters Peak Position Comment 3.13. A Standard Normal Distribution Graphics Probability Distribution Generating Function Moments Central Moments Moment Parameters Peak Position Comment 3.14. A Lognormal Distribution Graphics Probability Distribution Generating Function Moments Central Moments Moment Parameters Peak Position Comment 3.15. A Cauchy Distribution Graphics Probability Distribution Generating Function Moments Central Moments Moment Parameters Peak Position Comment 3.16. Distribution Graphics Probability Distribution Generating Function Moments Central Moments Moment Parameters Peak Position Comment 3.17. Distribution Graphics Probability Distribution Generating Function Moments Central Moments Moment Parameters Peak Position Comment 3.18. A Rayleigh Distribution Graphics Probability Distribution Generating Function Moments Central Moments Moment Parameters Peak Position Comment 3.19. An F Distribution Graphics Probability Distribution Generating Function Moments Central Moments Moment Parameters Peak Position Comment 3.20. A t Distribution Graphics Probability Distribution Generating Function Moments Central Moments Moment Parameters Peak Position Comment 3.21. An Exponential Distribution Graphics Probability Distribution Generating Function Moments Central Moments Moment Parameters Peak Position Comment 3.22. An Erlang Distribution Graphics Probability Distribution Generating Function Moments Central Moments Moment Parameters Peak Position Comment 3.23. A Laplace Distribution Graphics Probability Distribution Generating Function Moments Central Moments Moment Parameters Peak Position Comment 3.24. A Weibull Distribution Graphics Probability Distribution Generating Function Moments Central Moments Moment Parameters Peak Position Comment References About the Author Index Blank Page