دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Sean Wallis
سری:
ISBN (شابک) : 9780429491696
ناشر: Routledge
سال نشر: 2020
تعداد صفحات: 382
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 16 مگابایت
در صورت تبدیل فایل کتاب Statistics in Corpus Linguistics Research: A New Approach به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب آمار در تحقیقات زبانشناسی پیکره: رویکردی نوین نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Half Title Title Page Copyright Page Table of contents Preface Acknowledgments A Note on Terminology and Notation Part 1 Motivations 1 What Might Corpora Tell Us About Language? 1.1 Introduction 1.2 What Might a Corpus Tell Us? 1.3 The 3A Cycle 1.3.1. Annotation, Abstraction and Analysis 1.3.2 The Problem of Representational Plurality 1.3.3 ICECUP: A Platform for Treebank Research 1.4 What Might a Richly Annotated Corpus Tell Us? 1.5 External Influences: Modal Shall / Will Over Time 1.6 Interacting Grammatical Decisions: NP Premodification 1.7 Framing Constraints and Interaction Evidence 1.7.1 Framing Frequency Evidence 1.7.2 Framing Interaction Evidence 1.7.3 Framing and Annotation 1.7.4 Framing and Sampling 1.8 Conclusions Notes Part 2 Designing Experiments with Corpora 2 The Idea of Corpus Experiments 2.1 Introduction 2.2 Experimentation and Observation 2.2.1 Obtaining Data 2.2.2 Research Questions and Hypotheses 2.2.3 From Hypothesis to Experiment 2.3 Evaluating a Hypothesis 2.3.1 The Chi-Square Test 2.3.2 Extracting Data 2.3.3 Visualising Proportions, Probabilities and Significance 2.4 Refining the Experiment 2.5 Correlations and Causes 2.6 A Linguistic Interaction Experiment 2.7 Experiments and Disproof 2.8 What Is the Point of an Experiment? 2.9 Conclusions Notes 3 That Vexed Problem of Choice 3.1 Introduction 3.1.1 The Traditional ‘Per Million Words’ Approach 3.1.2 How Did Per Million Word Statistics Become Dominant? 3.1.3 Choice Models and Linguistic Theory 3.1.4 The Vexed Problem of Choice 3.1.5 Exposure Rates and Other Experimental Models 3.1.6 What Do We Mean by ‘Choice’? 3.2 Parameters of Choice 3.2.1 Types of Mutual Substitution 3.2.2 Multi-Way Choices and Decision Trees 3.2.3 Binomial Statistics, Tests and Time Series 3.2.4 Lavandera’s Dangerous Hypothesis 3.3 A Methodological Progression? 3.3.1 Per Million Words 3.3.2 Selecting a More Plausible Baseline 3.3.3 Enumerating Alternates 3.3.4 Linguistically Restricting the Sample 3.3.5 Eliminating Non-Alternating Cases 3.3.6 A Methodological Progression 3.4 Objections to Variationism 3.4.1 Feasibility 3.4.2 Arbitrariness 3.4.3 Oversimplification 3.4.4 The Problem of Polysemy 3.4.5 A Complex Ecology? 3.4.6 Necessary Reductionism Versus Complex Statistical Models 3.4.7 Discussion 3.5 Conclusions Notes 4 Choice Versus Meaning 4.1 Introduction 4.2 The Meanings of Very 4.3 The Choices of Very 4.4 Refining Baselines by Type 4.5 Conclusions 5 Balanced Samples and Imagined Populations 5.1 Introduction 5.2 A Study in Genre Variation 5.3 Imagining Populations 5.4 Multi-Variate and Multi-Level Modelling 5.5 More Texts – or Longer Ones? 5.6 Conclusions Part 3 Confidence Intervals and Significance Tests 6 Introducing Inferential Statistics 6.1 Why Is Statistics Difficult? 6.2 The Idea of Inferential Statistics 6.3 The Randomness of Life 6.3.1 The Binomial Distribution 6.3.2 The Ideal Binomial Distribution 6.3.3 Skewed Distributions 6.3.4 From Binomial to Normal 6.3.5 From Gauss to Wilson 6.3.6 Scatter and Confidence 6.4 Conclusions Notes 7 Plotting With Confidence 7.1 Introduction 7.1.1 Visualising Data 7.1.2 Comparing Observations and Identifying Significant Differences 7.2 Plotting the Graph 7.2.1 Step 1. Gather Raw Data 7.2.2 Step 2. Calculate Basic Wilson Score Interval Terms 7.2.3 Step 3. Calculate the Wilson Interval 7.2.4 Step 4. Plotting Intervals on Graphs 7.3 Comparing and Plotting Change 7.3.1 The Newcombe-Wilson Interval 7.3.2 Comparing Intervals: An Illustration 7.3.3 What Does the Newcombe-Wilson Interval Represent? 7.3.4 Comparing Multiple Points 7.3.5 Plotting Percentage Difference 7.3.6 Floating Bar Charts 7.4 An Apparent Paradox 7.5 Conclusions Notes 8 From Intervals to Tests 8.1 Introduction 8.1.1 Binomial Intervals and Tests 8.1.2 Sampling Assumptions Assumption 1. Randomness and independence Assumption 2. Every sampled instance is free to vary Assumption 3. The sample is very small relative to the size of the population 8.1.3 Deriving a Binomial Distribution 8.1.4 Some Example Data 8.2 Tests for a Single Binomial Proportion 8.2.1 The Single-Sample z Test 8.2.2 The 2 × 1 Goodness of Fit .2 Test 8.2.3 The Wilson Score Interval 8.2.4 Correcting for Continuity 8.2.5 The ‘Exact’ Binomial Test 8.2.6 The Clopper-Pearson Interval 8.2.7 The Log-Likelihood Test 8.2.8 A Simple Performance Comparison 8.3 Tests for Comparing Two Observed Proportions 8.3.1 The 2 × 2 .2 and z Test for Two Independent Proportions 8.3.2 The z Test for Two Independent Proportions from Independent Populations 8.3.3 The z Test for Two Independent Proportions with a Given Difference in Population Means 8.3.4 Continuity-Corrected 2 × 2 Tests 8.3.5 The Fisher ‘Exact’ Test 8.4 Applying Contingency Tests 8.4.1 Selecting Tests 8.4.2 Analysing Larger Tables 8.4.3 Linguistic Choice 8.4.4 Case Interaction 8.4.5 Large Samples and Small Populations 8.5 Comparing the Results of Experiments 8.6 Conclusions Notes 9 Comparing Frequencies in the Same Distribution 9.1 Introduction 9.2 The Single-Sample z Test 9.2.1 Comparing Frequency Pairs for Significant Difference 9.2.2 Performing the Test 9.3 Testing and Interpreting Intervals 9.3.1 The Wilson Interval Comparison Heuristic 9.3.2 Visualising the Test 9.4 Conclusions Notes 10 Reciprocating the Wilson Interval 10.1 Introduction 10.2 The Wilson Interval of Mean Utterance Length 10.2.1 Scatter and Confidence 10.2.2 From Length to Proportion 10.2.3 Example: Confidence Intervals on Mean Length of Utterance 10.2.4 Plotting the Results 10.3 Intervals on Monotonic Functions of p 10.4 Conclusions Notes 11 Competition Between Choices Over Time 11.1 Introduction 11.2 The ‘S Curve’ 11.3 Boundaries and Confidence Intervals 11.3.1 Confidence Intervals for p 11.3.2 Logistic Curves and Wilson Intervals 11.4 Logistic Regression 11.4.1 From Linear to Logistic Regression 11.4.2 Logit-Wilson Regression 11.4.3 Example 1: The Decline of the To-infinitive Perfect 11.4.4 Example 2: Catenative Verbs in Competition 11.4.5 Review 11.5 Impossible Logistic Multinomials 11.5.1 Binomials 11.5.2 Impossible Multinomials 11.5.3 Possible Hierarchical Multinomials 11.5.4 A Hierarchical Reanalysis of Example 2 11.5.5 The Three-Body Problem 11.6 Conclusions Notes 12 The Replication Crisis and the New Statistics 12.1 Introduction 12.2 A Corpus Linguistics Debate 12.3 Psychology Lessons? 12.4 The Road Not Travelled 12.5 What Does This Mean for Corpus Linguistics? 12.6 Some Recommendations 12.6.1 Recommendation 1: Include a Replication Step 12.6.2 Recommendation 2: Focus on Large Effects – and Clear Visualisations 12.6.3 Recommendation 3: Play Devil’s Advocate 12.6.4 A Checklist for Empirical Linguistics 12.7 Conclusions Notes 13 Choosing the Right Test 13.1 Introduction 13.1.1 Choosing a Dependent Variable and Baseline 13.1.2 Choosing Independent Variables 13.2 Tests for Categorical Data 13.2.1 Two Types of Contingency Test 13.2.2 The Benefits of Simple Tests 13.2.3 Visualising Uncertainty 13.2.4 When to Use Goodness of Fit Tests 13.2.5 Tests for Comparing Results 13.2.6 Optimum Methods of Calculation 13.3 Tests for Other Types of Data 13.3.1 t Tests for Comparing Two Independent Samples of Numeric Data 13.3.2 Reversing Tests 13.3.3 Tests for Other Types of Variables 13.3.4 Quantisation 13.4 Conclusions Notes Part 4 Effect Sizes and Meta-Tests 14 The Size of an Effect 14.1 Introduction 14.2 Effect Sizes for Two-Variable Tables 14.2.1 Simple Difference 14.2.2 The Problem of Prediction 14.2.3 Cramér’s . 14.2.4 Other Probabilistic Approaches to Dependent Probability 14.3 Confidence Intervals on . 14.3.1 Confidence Intervals on 2 × 2 . 14.3.2 Confidence Intervals for Cramér’s . 14.3.3 Example: Investigating Grammatical Priming 14.4 Goodness of Fit Effect Sizes 14.4.1 Unweighted .p 14.4.2 Variance-Weighted .e 14.4.3 Example: Correlating the Present Perfect 14.5 Conclusions Notes 15 Meta-Tests for Comparing Tables of Results 15.1 Introduction 15.1.1 How Not to Compare Test Results 15.1.2 Comparing Sizes of Effect 15.1.3 Other Meta-Tests 15.2 Some Preliminaries 15.2.1 Test Assumptions 15.2.2 Correcting for Continuity 15.2.3 Example Data and Notation 15.3 Point and Multi-Point Tests for Homogeneity Tables 15.3.1 Reorganising Contingency Tables for 2 × 1 Tests 15.3.2 The Newcombe-Wilson Point Test 15.3.3 The Gaussian Point Test 15.3.4 The Multi-Point Test for r × c Homogeneity Tables 15.4 Gradient Tests for Homogeneity Tables 15.4.1 The 2 × 2 Newcombe-Wilson Gradient Test 15.4.2 Cramér’s . Interval and Test 15.4.3 r × 2 Homogeneity Gradient Tests 15.4.4 Interpreting Gradient Meta-Tests for Large Tables 15.5 Gradient Tests for Goodness of Fit Tables 15.5.1 The 2 × 1 Wilson Interval Gradient Test 15.5.2 r × 1 Goodness of Fit Gradient Tests 15.6 Subset Tests 15.6.1 Point Tests for Subsets 15.6.2 Multi-Point Subset Tests 15.6.3 Gradient Subset Tests 15.6.4 Goodness of Fit Subset Tests 15.7 Conclusions Notes Part 5 Statistical Solutions for Corpus Samples 16 Conducting Research With Imperfect Data 16.1 Introduction 16.2 Reviewing Subsamples 16.2.1 Example 1: Get Versus Be Passive 16.2.2 Subsampling and Reviewing 16.2.3 Estimating the Observed Probability p 16.2.4 Contingency Tests and Multinomial Dependent Variables 16.3 Reviewing Preliminary Analyses 16.3.1 Example 2: Embedded and Sequential Postmodifiers 16.3.2 Testing the Worst-Case Scenario 16.3.3 Combining Subsampling Worst-Case Analysis 16.3.4 Ambiguity and Error 16.4 Resampling and p-hacking 16.5 Conclusions Notes 17 Adjusting Intervals for Random-Text Samples 17.1 Introduction 17.2 Recalibrating Binomial Models 17.3 Examples with Large Samples 17.3.1 Example 1: Interrogative Clause Proportion, ‘Direct Conversations’ 17.3.2 Example 2: Clauses Per Word, ‘Direct Conversations’ 17.3.3 Uneven-Size Subsamples 17.3.4 Example 1 Revisited, Across ICE-GB 17.4 Alternation Studies with Small Samples 17.4.1 Applying the Large Sample Method 17.4.2 Singletons, Partitioning and Pooling 17.4.3 Review 17.5 Conclusions 1601065483601_298 Part 6 Concluding Remarks 18 Plotting the Wilson Distribution 18.1 Introduction 18.2 Plotting the Distribution 18.2.1 Calculating w–(a) from the Standard Normal Distribution 18.2.2 Plotting Points 18.2.3 Delta Approximation 18.3 Example Plots 18.3.1 Sample Size n = 10, Observed Proportion p = 0.5 18.3.2 Properties of Wilson Areas 18.3.3 The Effect of p Tending to Extremes 18.3.4 The Effect of Very Small n 18.4 Further Perspectives on Wilson Distributions 18.4.1 Percentiles of Wilson Distributions 18.4.2 The Logit-Wilson Distribution 18.5 Alternative Distributions 18.5.1 Continuity-Corrected Wilson Distributions 18.5.2 Clopper-Pearson Distributions 18.6 Conclusions Notes 19 In Conclusion Appendices 1601065483601_321 1601065483601_322 Glossary References Appendix AThe Interval Equality Principle Appendix BPseudo-Code for Computational Procedures Index