ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Statistics For The Behavioural Sciences: An Introduction To Frequentist And Bayesian Approaches

دانلود کتاب آمار برای علوم رفتاری: مقدمه ای بر رویکردهای فراگیر و بیزی

Statistics For The Behavioural Sciences: An Introduction To Frequentist And Bayesian Approaches

مشخصات کتاب

Statistics For The Behavioural Sciences: An Introduction To Frequentist And Bayesian Approaches

دسته بندی: روانشناسی
ویرایش: 2 
نویسندگان:   
سری:  
ISBN (شابک) : 1138711489, 9781138711501 
ناشر: Routledge/Taylor & Francis Group 
سال نشر: 2021 
تعداد صفحات: 333 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 20 مگابایت 

قیمت کتاب (تومان) : 53,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 12


در صورت تبدیل فایل کتاب Statistics For The Behavioural Sciences: An Introduction To Frequentist And Bayesian Approaches به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب آمار برای علوم رفتاری: مقدمه ای بر رویکردهای فراگیر و بیزی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب آمار برای علوم رفتاری: مقدمه ای بر رویکردهای فراگیر و بیزی

این کتاب درسی قابل دسترس برای کسانی است که پیش زمینه ریاضی ندارند (فقط برخی مفاهیم جبر پایه کافی است) و مقدمه ای جامع برای تمام موضوعات تحت پوشش در دوره های آمار علوم رفتاری مقدماتی ارائه می دهد. این شامل بسیاری از مثال های واقعی برای نشان دادن رویکردهای عمیق بر اساس آزمایش های روانشناسی واقعی با استفاده از تکنیک های آماری توصیف شده است. محتوای جدید در این ویرایش دوم کاملاً به روز شده شامل مقدمه ای بر آمار بیزی است که تکمیل کننده پوشش آمار کلاسیک/متداول موجود در ویرایش اول است. همچنین جزئیات عملی در مورد نحوه انجام تجزیه و تحلیل با استفاده از JASP ارائه می دهد - یک بسته آماری قابل دانلود رایگان که در سطح جهانی استفاده می شود. منابع الکترونیکی به روز شده همچنین دارای طیف وسیعی از مطالب جدید از جمله تمرین های اضافی است تا خوانندگان بتوانند خود را در مورد آنچه در کتاب آموخته اند آزمایش کنند. این متن به موقع و بسیار خوانا برای دانشجویان دوره های کارشناسی روانشناسی و روش های تحقیق در رشته های مرتبط و همچنین هر کسی که علاقه مند به درک و به کارگیری مفاهیم پایه و تکنیک های استنتاجی مرتبط با آمار در علوم رفتاری است ارزشمند خواهد بود.


توضیحاتی درمورد کتاب به خارجی

This accessible textbook is for those without a mathematical background (just some notions of basic algebra are sufficient) and provides a comprehensive introduction to all topics covered in introductory behavioural science statistics courses. It includes plenty of real examples to demonstrate approaches in depth based on real psychology experiments utilizing the statistical techniques described. New content in this thoroughly updated second edition includes an introduction to Bayesian statistics which complements the coverage of Classical/Frequentist statistics present in the first edition. It also offers practical details on how to perform analyses using JASP – a globally employed, freely downloadable statistical package. The updated eResources also feature a range of new material including additional exercises so readers can test themselves on what they have learned in the book. This timely and highly readable text will be invaluable to undergraduate students of psychology and research methods courses in related disciplines, as well as anyone with an interest in understanding and applying the basic concepts and inferential techniques associated with statistics in the behavioural sciences.



فهرست مطالب

Cover
Half Title
Title Page
Copyright Page
Dedication
Contents
Preface edition I
Acknowledgements edition I
Preface edition II
Acknowledgements edition II
0. Mathematics and algebra: A rapid-mini review
	0.1. Operators and symbols
	0.2. Orders of operations
	0.3. Dealing with fractions
	0.4. Variables, constants and equations
	0.5. Graphs and equations
	0.6. How to solve an equation with one unknown
1. Introduction and basic concepts
	1.1. Why is statistics useful in the behavioural sciences?
	1.2. Simple example of statistical testing
	1.3. Measurement scales
	1.4. Descriptive and inferential statistics
	1.5. What is an experiment?
	1.6. Correlational studies
	1.7. Irrelevant variables
2. Descriptive statistics
	2.1. Organising raw data
	2.2. Frequency distributions and histograms
	2.3. Grouped data
	2.4. Stem-and-leaf diagrams
	2.5. Summarising data
	2.6. Measures of central tendency: Mode, median, and mean
	2.7. Advantages and disadvantages of mode, median, and mean
	2.8. A useful digression on the Σ notation
	2.9. Measures of dispersion (or variability)
	2.10. Further on the mean, variance, and standard deviation of frequency distributions
	2.11. How to calculate the combined mean and the combined variance of several samples (Web only content)
	2.12. Properties of estimators
	2.13. Mean and variance of linearly transformed data
	2.14. Using JASP for data analysis: Descriptive statistics
3. Introduction to probability
	3.1. Why are some notions of probability useful?
	3.2. Some preliminary definitions and the concept of probability
	3.3. Venn diagrams and probability
	3.4. The addition rule and the multiplication rule of probability
	3.5. Probability trees
	3.6. Conditional probability
	3.7. Independence and conditional probability
	3.8. Bayes’ theorem
4. Introduction to inferential statistics
	4.1. Inferential statistics and probability
	4.2. The Classical/Frequentist approach to inferential statistics
	4.3. How the inferential statistic process operates in Frequentist statistics
	4.4. Reducing the risk of false positives
	4.5. The risk of making false negative errors
	4.6. Estimating the magnitude of the size of the parameter associated to the theory
	4.7. Confidence intervals and inferential statistics
	4.8. The Bayesian approach to inferential statistics
	4.9. Odds, probabilities and how to update probabilities
	4.10. Chickenpox or Smallpox? This is the dilemma Bayesian inference in practice
	4.11. The Bayes Factor: The Bayesian equivalent of significance testing
	4.12. The Bayes Factor in practice
	4.13. Computing the BF and interpreting its function in statistical inference
	4.14. Estimating the magnitude of the size of the parameter associated to the theory: Credible intervals
	4.15. Frequentist and Bayesian approaches to statistical inference: A rough comparison
5. Probability distributions and the binomial distribution
	5.1. Introduction
	5.2. Probability distributions
	5.3. Calculating the mean (μ) of a probability distribution
	5.4. Calculating the variance (σ2) and the standard deviation (σ) of a probability distribution
	5.5. Orderings (or permutations)
	5.6. Combinations
	5.7. The binomial distribution
	5.8. Mean and variance of the binomial distribution
	5.9. How to use the binomial distribution in testing hypotheses: The frequentist approach
	5.10. The sign test
	5.11. Further on the binomial distribution and its use in hypothesis testing (Web only content)
	5.12. Using JASP to conduct the binomial test (Frequentist approach)
	5.13. The Bayesian binomial test
	5.14. Using JASP to conduct the binomial test (Bayesian approach)
	5.15. The selection of the prior
6. Continuous random variables and the normal distribution
	6.1. Introduction
	6.2. Continuous random variables and their distribution
	6.3. The normal distribution
	6.4. The standard normal distribution
	6.5. Hypothesis testing and the normal distribution: The frequentist approach
	6.6. Type I and Type II errors
	6.7. One-tailed and two-tailed statistical tests
	6.8. Hypothesis testing and the normal distribution: The Bayesian approach
	6.9. Using the normal distribution as an approximation of the binomialdistribution (Web only content)
7. Sampling distribution of the mean, its use in hypothesis testing and the one-sample t-test (Frequentist approach)
	7.1. Introduction
	7.2. The sampling distribution of the mean and the Central Limit Theorem
	7.3. Testing hypotheses about means whenis known
	7.4. Testing hypotheses about means when σ is unknown: The Students t-distribution and the one-sample t-test
	7.5. Two-sided confidence intervals for a population mean: Estimating the size of the population mean
	7.6. A fundamental conceptual equation in frequentist data analysis: Magnitude of a significance test = Size of the effect × Size of the study
	7.7. Statistical power analysis: A brief introduction and its application to the one-sample t-test
	7.8. Power calculations for the one-sample t-test
	7.9. Using JASP to conduct the one sample t-test (Frequentist approach)
8. Comparing a pair of means: The matched- and the independent-samples t-test (Frequentist approach)
	8.1. Introduction
	8.2. The matched-samples t-test
	8.3. Confidence intervals for a population mean
	8.4. Counterbalancing
	8.5. The sampling distribution of the difference between pairs of means and the independent-samples t-test
	8.6. The independent-samples t-test
	8.7. An application of the independent-samples t-test
	8.8. Confidence intervals for the difference between two population means
	8.9. The robustness of the independent-samples t-test
	8.10. An example of the violation of the assumption of homogeneity of variances (Web only content)
	8.11. Ceiling and floor effects
	8.12. Matched-samples or independent-samples t-test: Which of these two tests should be used?
	8.13. A fundamental conceptual equation in data analysis: Magnitude of a significance test = Size of the effect × Size of the study
	8.14. Power analysis for the independent-samples and the paired-samples t-test
	8.15. Using JASP to conduct the paired and the independent sample t-test (Frequentist approach)
9. The Bayesian approach to the t-test
	9.1. Introduction
	9.2. An illustration of how to calculate the Bayes Factor for the one-sample t-test case
	9.3. Credible intervals (ie the Bayesian version of Frequentist confidence intervals)
	9.4. Using JASP to perform the one-sample t-test and the selection of the distribution to model your prior
	9.5. JASP in practice: The Bayesian one-sample t-test
	9.6. JASP in practice: The Bayesian paired-samples t-test
	9.7. JASP in practice: The Bayesian independent-samples t-test
	9.8. Bayesian t-test using Dienes’ calculator
10. Correlation
	10.1. Introduction
	10.2. Linear relationships between two continuous variables
	10.3. More on linear relationships between two variables
	10.4. The covariance between two variables
	10.5. The Pearson product-moment correlation coefficient r
	10.6. Hypothesis testing on the Pearson correlation coefficient r
	10.7. Confidence intervals for the Pearson correlation coefficient
	10.8. Testing the significance of the difference between two independent Pearson correlation coefficients r
	10.9. Testing the significance of the difference between two nonindependent Pearson correlation coefficients r
	10.10. Partial correlation
	10.11. Factors affecting the Pearson correlation coefficient r
	10.12. The point biserial correlation rpb
	10.13. The Spearman Rank correlation coefficient
	10.14. Kendall’s coefficient of concordance W
	10.15. Power calculation for correlation coefficients
	10.16. Power calculation for the difference between two independent Pearson correlation coefficients r
	10.17. Using JASP to perform correlation analyses (Frequentist approach)
	10.18. Using JASP to perform correlation analyses (Bayesian approach)
11. Regression
	11.1. Introduction
	11.2. The regression line
	11.3. Linear regression and correlation
	11.4. Hypothesis testing on the slope b
	11.5. Confidence intervals for the population regression slope  β
	11.6. Further on the relationship between linear regression and Pearson's r: r2 as a measure of effect size
	11.7. Further on the error of prediction
	11.8. Why the term regression?
	11.9. Using JASP to conduct a linear regression analysis (Frequentist approach)
	11.10. Using JASP to conduct a linear regression analysis (Bayesian approach)
12. The chi-square distribution and the analysis of categorical data
	12.1. Introduction
	12.2. The chi-square (χ2) distribution
	12.3. The Pearson's chi-square test
	12.4. The Pearson's χ2 goodness of fit test
	12.5. Pearson's χ2 test used in assessing how well the distribution of a set of data fits a prescribed distribution (Web only content)
	12.6. Further on the goodness of fit test (Web only content)
	12.7. Assumptions underlying the use of Pearson's χ2 test
	12.8. Compacting a set of data for the goodness of fit test
	12.9. Pearson's χ2 test and the analysis of 2 × 2 contingency tables
	12.10. Further on the degrees of freedom and the calculation of the expected frequencies for any contingency table
	12.11. The analysis of R × C contingency tables
	12.12. One- and two-tailed tests
	12.13. How to measure the strength of the association between variables in a contingency table
	12.14. A fundamental conceptual equation in data analysis: Magnitude of a significance test = Size of the effect × Size of the study
	12.15. The odds ratio and the analysis of 2 × 2 contingency tables
	12.16. An important note on the inclusion of non-occurrences in contingency tables
	12.17. The analysis of contingency tables using JASP (Frequentist approach)
	12.18. The analysis of contingency tables using JASP  (Bayesian approach)
13. Statistical tests on proportions (Web only content)
14. Nonparametric statistical tests (Web only content)
Appendix
References
Index




نظرات کاربران