دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 13 نویسندگان: David R. Anderson, Dennis J. Sweeney, Thomas A. Williams, Jeffrey D. Camm, James J. Cochran سری: ISBN (شابک) : 1305585313, 9781305585317 ناشر: Cengage Learning سال نشر: 2016 تعداد صفحات: 1122 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 42 مگابایت
در صورت تبدیل فایل کتاب Statistics for Business & Economics (with XLSTAT Education Edition Printed Access Card) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب آماری برای تجارت و اقتصاد (با کارت دسترسی چاپی نسخه XLSTAT) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
SATISTICS FOR BUSINESS AND ECONOMICS، 13e، که به شما کمک می کند مفاهیم فصل را به عمل دنیای واقعی متصل کنید، روش آماری مناسب، رویکرد سناریوی مشکل اثبات شده و برنامه های کاربردی معنادار را ارائه می دهد که به وضوح نشان می دهد که چگونه اطلاعات آماری تصمیمات را در دنیای تجارت امروز آگاه می کند. کاملاً به روز، بیش از 350 مثال تجاری واقعی، موارد عملی و تمرینات عملی، مفاهیم فصل را زنده می کنند. علاوه بر این، تمرینات با استفاده از Minitab 17 و Microsoft Office Excel 2013 به شما امکان تمرین با استفاده از نرم افزارهای آماری پیشرو را می دهد، در حالی که مواد پشتیبانی مانند سیستم های مدیریت دوره آنلاین MindTap و CengageNOW شما را با منابع فراوانی برای کمک به حداکثر رساندن موفقیت دوره خود مجهز می کند.
Helping you connect chapter concepts to real-world practice, STATISTICS FOR BUSINESS AND ECONOMICS, 13e, delivers sound statistical methodology, a proven problem-scenario approach, and meaningful applications that clearly demonstrate how statistical information informs decisions in today�s business world. Completely up to date, more than 350 real business examples, practical cases, and hands-on exercises bring chapter concepts to life. In addition, exercises using Minitab 17 and Microsoft Office Excel 2013 give you practice using leading statistical software, while support materials like MindTap and CengageNOW online course management systems equip you with a wealth of resources to help maximize your course success.
Brief Contents Contents Preface About the Authors Ch 1: Data and Statistics 1.1: Applications in Business and Economics 1.2: Data 1.3: Data Sources 1.4: Descriptive Statistics 1.5: Statistical Inference 1.6: Analytics 1.7: Big Data and Data Mining 1.8: Computers and Statistical Analysis 1.9: Ethical Guidelines for Statistical Practice Summary Glossary Supplementary Exercises Ch 2: Descriptive Statistics: Tabular and Graphical Displays 2.1: Summarizing Data for a Categorical Variable 2.2: Summarizing Data for a Quantitative Variable 2.3: Summarizing Data for Two Variables Using Tables 2.4: Summarizing Data for Two Variables Using Graphical Displays 2.5: Data Visualization: Best Practices in Creating Effective Graphical Displays Summary Glossary Key Formulas Supplementary Exercises Case Problem 1: Pelican Stores Case Problem 2: Motion Picture Industry Case Problem 3: Queen City Appendix 2.1: Using Minitab for Tabular and Graphical Presentations Appendix 2.2: Using Excel for Tabular and Graphical Presentations Ch 3: Descriptive Statistics: Numerical Measures 3.1: Measures of Location 3.2: Measures of Variability 3.3: Measures of Distribution Shape, Relative Location, and Detecting Outliers 3.4: Five-Number Summaries and Box Plots 3.5: Measures of Association between Two Variables 3.6: Data Dashboards: Adding Numerical Measures to Improve Effectiveness Summary Glossary Key Formulas Supplementary Exercises Case Problem 1: Pelican Stores Case Problem 2: Motion Picture Industry Case Problem 3: Business Schools of Asia-Pacific Case Problem 4: Heavenly Chocolates Website Transactions Case Problem 5: African Elephant Populations Appendix 3.1: Descriptive Statistics Using Minitab Appendix 3.2: Descriptive Statistics Using Excel Ch 4: Introduction to Probability 4.1: Random Experiments, Counting Rules, and Assigning Probabilities 4.2: Events and Their Probabilities 4.3: Some Basic Relationships of Probability 4.4: Conditional Probability 4.5: Bayes' Theorem Summary Glossary Key Formulas Supplementary Exercises Case Problem: Hamilton County Judges Ch 5: Discrete Probability Distributions 5.1: Random Variables 5.2: Developing Discrete Probability Distributions 5.3: Expected Value and Variance 5.4: Bivariate Distributions, Covariance, and Financial Portfolios 5.5: Binomial Probability Distribution 5.6: Poisson Probability Distribution 5.7: Hypergeometric Probability Distribution Summary Glossary Key Formulas Supplementary Exercises Case Problem: Go Bananas! Appendix 5.1: Discrete Probability Distributions with Minitab Appendix 5.2: Discrete Probability Distributions with Excel Ch 6: Continuous Probability Distributions 6.1: Uniform Probability Distribution 6.2: Normal Probability Distribution 6.3: Normal Approximation of Binomial Probabilities 6.4: Exponential Probability Distribution Summary Glossary Key Formulas Supplementary Exercises Case Problem: Specialty Toys Appendix 6.1: Continuous Probability Distributions with Minitab Appendix 6.2: Continuous Probability Distributions with Excel Ch 7: Sampling and Sampling Distributions 7.1: The Electronics Associates Sampling Problem 7.2: Selecting a Sample 7.3: Point Estimation 7.4: Introduction to Sampling Distributions 7.5: Sampling Distribution of x 7.6: Sampling Distribution of p 7.7: Properties of Point Estimators 7.8: Other Sampling Methods Summary Glossary Key Formulas Supplementary Exercises Case Problem: Marion Dairies Appendix 7.1: The Expected Value and Standard Deviation of x Appendix 7.2: Random Sampling with Minitab Appendix 7.3: Random Sampling with Excel Ch 8: Interval Estimation 8.1: Population Mean: o Known 8.2: Population Mean: o Unknown 8.3: Determining the Sample Size 8.4: Population Proportion Summary Glossary Key Formulas Supplementary Exercises Case Problem 1: Young Professional Magazine Case Problem 2: Gulf Real Estate Properties Case Problem 3: Metropolitan Research, Inc. Appendix 8.1: Interval Estimation with Minitab Appendix 8.2: Interval Estimation Using Excel Ch 9: Hypothesis Tests 9.1: Developing Null and Alternative Hypotheses 9.2: Type I and Type II Errors 9.3: Population Mean: o Known 9.4: Population Mean: o Unknown 9.5: Population Proportion 9.6: Hypothesis Testing and Decision Making 9.7: Calculating the Probability of Type II Errors 9.8: Determining the Sample Size for a Hypothesis Test about a Population Mean Summary Glossary Key Formulas Supplementary Exercises Case Problem 1: Quality Associates, Inc. Case Problem 2: Ethical Behavior of Business Students at Bayview University Appendix 9.1: Hypothesis Testing with Minitab Appendix 9.2: Hypothesis Testing with Excel Ch 10: Inference about Means and Proportions with Two Populations 10.1: Inferences about the Difference between Two Population Means: o1 and o2 Known 10.2: Inferences about the Difference between Two Population Means: o1 and o2 Unknown 10.3: Inferences about the Difference between Two Population Means: Matched Samples 10.4: Inferences about the Difference between Two Population Proportions Summary Glossary Key Formulas Supplementary Exercises Case Problem: Par, Inc. Appendix 10.1: Inferences about Two Populations Using Minitab Appendix 10.2: Inferences about Two Populations Using Excel Ch 11: Inferences about Population Variances 11.1: Inferences about a Population Variance 11.2: Inferences about Two Population Variances Summary Key Formulas Supplementary Exercises Case Problem: Air Force Training Program Appendix 11.1: Population Variances with Minitab Appendix 11.2: Population Variances with Excel Ch 12: Comparing Multiple Proportions, Test of Independence and Goodness of Fit 12.1: Testing the Equality of Population Proportions for Three or More Populations 12.2: Test of Independence 12.3: Goodness of Fit Test Summary Glossary Key Formulas Supplementary Exercises Case Problem: A Bipartisan Agenda for Change Appendix 12.1: Chi-Square Tests Using Minitab Appendix 12.2: Chi-Square Tests Using Excel Ch 13: Experimental Design and Analysis of Variance 13.1: An Introduction to Experimental Design and Analysis of Variance 13.2: Analysis of Variance and the Completely Randomized Design 13.3: Multiple Comparison Procedures 13.4: Randomized Block Design 13.5: Factorial Experiment Summary Glossary Key Formulas Supplementary Exercises Case Problem 1: Wentworth Medical Center Case Problem 2: Compensation for Sales Professionals Appendix 13.1: Analysis of Variance with Minitab Appendix 13.2: Analysis of Variance with Excel Ch 14: Simple Linear Regression 14.1: Simple Linear Regression Model 14.2: Least Squares Method 14.3: Coefficient of Determination 14.4: Model Assumptions 14.5: Testing for Significance 14.6: Using the Estimated Regression Equation for Estimation and Prediction 14.7: Computer Solution 14.8: Residual Analysis: Validating Model Assumptions 14.9: Residual Analysis: Outliers and Influential Observations Summary Glossary Key Formulas Supplementary Exercises Case Problem 1: Measuring Stock Market Risk Case Problem 2: U.S. Department of Transportation Case Problem 3: Selecting a Point-and-Shoot Digital Camera Case Problem 4: Finding the Best Car Value Case Problem 5: Buckeye Creek Amusement Park Appendix 14.1: Calculus-Based Derivation of Least Squares Formulas Appendix 14.2: A Test for Significance Using Correlation Appendix 14.3: Regression Analysis with Minitab Appendix 14.4: Regression Analysis with Excel Ch 15: Multiple Regression 15.1: Multiple Regression Model 15.2: Least Squares Method 15.3: Multiple Coefficient of Determination 15.4: Model Assumptions 15.5: Testing for Significance 15.6: Using the Estimated Regression Equation for Estimation and Prediction 15.7: Categorical Independent Variables 15.8: Residual Analysis 15.9: Logistic Regression Summary Glossary Key Formulas Supplementary Exercises Case Problem 1: Consumer Research, Inc. Case Problem 2: Predicting Winnings for NASCAR Drivers Case Problem 3: Finding the Best Car Value Appendix 15.1: Multiple Regression with Minitab Appendix 15.2: Multiple Regression with Excel Appendix 15.3: Logistic Regression with Minitab Ch 16: Regression Analysis: Model Building 16.1: General Linear Model 16.2: Determining When to Add or Delete Variables 16.3: Analysis of a Larger Problem 16.4: Variable Selection Procedures 16.5: Multiple Regression Approach to Experimental Design 16.6: Autocorrelation and the Durbin-Watson Test Summary Glossary Key Formulas Supplementary Exercises Case Problem 1: Analysis of PGA Tour Statistics Case Problem 2: Rating Wines from the Piedmont Region of Italy Appendix 16.1: Variable Selection Procedures with Minitab Ch 17: Time Series Analysis and Forecasting 17.1: Time Series Patterns 17.2: Forecast Accuracy 17.3: Moving Averages and Exponential Smoothing 17.4: Trend Projection 17.5: Seasonality and Trend 17.6: Time Series Decomposition Summary Glossary Key Formulas Supplementary Exercises Case Problem 1: Forecasting Food and Beverage Sales Case Problem 2: Forecasting Lost Sales Appendix 17.1: Forecasting with Minitab Appendix 17.2: Forecasting with Excel Ch 18: Nonparametric Methods 18.1: Sign Test 18.2: Wilcoxon Signed-Rank Test 18.3: Mann-Whitney-Wilcoxon Test 18.4: Kruskal-Wallis Test 18.5: Rank Correlation Summary Glossary Key Formulas Supplementary Exercises Appendix 18.1: Nonparametric Methods with Minitab Appendix 18.2: Nonparametric Methods with Excel Ch 19: Statistical Methods for Quality Control 19.1: Philosophies and Frameworks 19.2: Statistical Process Control 19.3: Acceptance Sampling Summary Glossary Key Formulas Supplementary Exercises Appendix 19.1: Control Charts with Minitab Ch 20: Index Numbers 20.1: Price Relatives 20.2: Aggregate Price Indexes 20.3: Computing an Aggregate Price Index from Price Relatives 20.4: Some Important Price Indexes 20.5: Deflating a Series by Price Indexes 20.6: Price Indexes: Other Considerations 20.7: Quantity Indexes Summary Glossary Key Formulas Supplementary Exercises Appendixes Appendix A: References and Bibliography Appendix B: Tables Appendix C: Summation Notation Appendix D: Self-Test Solutions and Answers to Even-Numbered Exercises Appendix E: Microsoft Excel 2013 and Tools for Statistical Analysis Appendix F: Computing p-Values Using Minitab and Excel Index