دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [12 ed.]
نویسندگان: Michael J. Campbell (editor)
سری:
ISBN (شابک) : 1119401305, 9781119401308
ناشر: Wiley-Blackwell
سال نشر: 2021
تعداد صفحات: 304
[303]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 6 Mb
در صورت تبدیل فایل کتاب Statistics at Square One به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب آمار در Square One نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
ویرایش جدید معرفی محبوب به دنیای آمار برای متخصصان مراقبت های بهداشتی و دانشجویان پزشکی
برای اولین بار تقریباً منتشر شد سه دهه پیش، آمار در Square One یکی از محبوبترین مقدمههای آمار پزشکی باقی مانده است. اکنون در دوازدهمین ویرایش خود، این پرفروشترین کتاب بینالمللی همچنان یک منبع ضروری برای هر کسی است که نیاز به معرفی کامل آمار در علوم بهداشتی دارد. فصلهای واضح و در دسترس به دانشآموزان بدون پیشزمینه قبلی در موضوع کمک میکند تا موضوعات اساسی از جمله آمار خلاصه برای دادههای کمی و باینری، آزمونهای تشخیصی و غربالگری، جمعیتها و نمونهها، تجزیه و تحلیل بقا، همبستگی و رگرسیون، طراحی مطالعه، مدلسازی رایانهای و غیره را درک کنند.
این نسخه درک معاصر از آمار پزشکی را منعکس میکند و بر اهمیت آمار در سلامت عمومی، از جمله پوشش بهروزشده گسترده آزمایشهای تشخیصی و نمونههای جدید مرتبط با کووید، تأکید میکند. اکنون همه شکل ها و مثال ها شامل کدهایی برای بازتولید آنها در نرم افزار آماری R می باشد. فصلهای جدید اصول درک اعداد را پوشش میدهند و استفاده از مدلها را در تجزیه و تحلیل آماری پزشکی معرفی میکنند. بر اساس تجربه چندین ساله نویسنده در تدریس به دانشجویان علوم پزشکی و بهداشت، آخرین ویرایش این کتاب درسی کلاسیک:
آمار در Square One برای همه پزشکان و پزشکان مراقبت های بهداشتی و دانشجویانی که مایل به درک کاربرد و ارزش تجزیه و تحلیل آماری هستند لازم است. در علوم بهداشتی
The new edition of the popular introduction to the world of statistics for health care professionals and medical students
First published nearly three decades ago, Statistics at Square One remains one of the most popular introductions to medical statistics. Now in its twelfth edition, this international bestseller continues to be a must-have resource for anyone in need of a thorough introduction to statistics in the health sciences. Clear and accessible chapters help students with no previous background in the subject understand fundamental topics including summary statistics for quantitative and binary data, diagnostic and screening tests, populations and samples, survival analysis, correlation and regression, study design, computer modeling, and more.
This edition reflects contemporary understanding of medical statistics and emphasizes the importance of statistics in public health, including extensively updated coverage of diagnostic tests and new COVID-related examples. All figures and examples now include code to reproduce them in the R statistical software. New chapters cover the basics for understanding numbers and introduce the use of models in medical statistical analysis. Based on the author’s many years of experience teaching medical and health science students, the latest edition of this classic textbook:
Statistics at Square One is required reading for all medical and health care practitioners and students wanting to understand the use and value of statistical analysis in the health sciences.
Cover Title Page Copyright Page Contents Preface About the companion website Chapter 1 Understanding basic numbers When is a number large? Ratios Using ratios to adjust for other variables Proportions, percentages and odds Percentage difference and percentage change: importance of baseline Rounding proportions and percentages Probabilities and risks Prevalence and incidence rate Trusting numbers Conclusions Further reading Exercises References Chapter 2 Data display and summary Types of data Stem-and-leaf plots and dot plots Box-whisker plots Median Measures of variation Frequency tables and histograms Bar charts Further reading Common questions What is the distinction between a histogram and a bar chart? What are poor methods of displaying data? Displaying data in papers Exercises References Chapter 3 Summary statistics for quantitative data Mean Variance and standard deviation Standard deviation from ungrouped data Standard deviation from grouped data Normal distribution Skewness Between-subjects and within-subjects standard deviation Common questions When should I quote the mean and when should I quote the median to describe my data? When should I use a standard deviation to summarise variability? How can I tell if data are skewed from a table? When should I use the mode? Formula appreciation Reading and Displaying Summary Statistics Exercises References Chapter 4 Summary statistics for binary data Summarising one binary variable Summarising the relationship between two binary variables Relative Risks versus Odds Ratios Odds ratios and cross-sectional studies Odds ratios and case–control studies Example of a case–control study Estimating relative risk from case–control studies Common questions When should I quote an odds ratio and when should I quote a relative risk? How does one choose the numerator and denominator for a relative risk? How should one quote relative risks? Should one ever quote a number needed to treat? Reading and displaying summary statistics Exercises References Chapter 5 Diagnostic and screening tests Diagnostic and screening tests Examples Example 1: Test for COVID-19 Example 2: Test for generalised anxiety disorder Sensitivity and Specificity Positive predictive value in relation to prevalence Likelihood ratio Receiver operating characteristics curves Further discussion on diagnostic and screening tests Limitations of the conventional diagnostic testing paradigm Reading and reporting diagnostic/screening tests Exercises References Chapter 6 Populations and samples Populations Samples Unbiasedness and precision Problems of bias in non-randomised samples (especially Big Data) Randomisation Variation between samples Standard error of the mean Example of standard error Standard error of a proportion or a percentage Problems with non-random samples Common questions What is an acceptable response rate from a survey? Given measurements on a sample, what is the difference between a standard deviation and a standard error? When should I use a standard deviation to describe data and when should I use a standard error? Important points Reading and reporting populations and samples Exercises References Chapter 7 Statements of probability and confidence intervals Reference ranges Confidence intervals Large sample standard error of difference between means Large sample confidence interval for the difference in two means Standard error of difference between percentages or proportions Confidence interval for a difference in proportions or percentages Confidence interval for an odds ratio Confidence interval for a relative risk Confidence Intervals for other estimates Common Questions What is the difference between a reference range and a confidence interval? If I repeated a study with the same sample size, would the new results fall in the confidence interval 95% of the time? Reading and reporting confidence intervals Formula appreciation Exercises References Chapter 8 P values, power, type I and type II errors Null hypothesis and type I error Testing for differences of two means Testing for a difference in two proportions P value P values, confidence intervals and clinically important results Alternative hypothesis and type II error Other types of statistical inference Issues with P values One-sided and two-sided tests Tests for superiority, tests for non-inferiority and tests for equivalence Links with diagnostic tests Common questions Why is the P value not the probability that the null hypothesis is true? Why is 5% usually used as the level at which results are deemed ‘significant’? Reading and reporting significance tests Exercises References Chapter 9 Tests for differences between two groups of a quantitative outcome with small samples Student’s t test Confidence interval for the mean from a small sample Difference of sample mean from population mean (one-sample t test) Difference between means of two samples Unequal standard deviations Difference between means of paired samples (paired t test) Non-parametric or distribution-free tests Tests for differences in unpaired samples of non-Normally distributed data (Mann–Whitney U test) Tests for differences in paired samples of non-Normally distributed data (Wilcoxon test) Computer-intensive methods Permutation tests: unpaired tests Permutation tests: paired tests The bootstrap Discussion Reading and reporting t tests and non-parametric tests Common questions Should I test my data for Normality before using the t test? Should I test for equality of the standard deviations before using the usual t test? Why should I use a paired test if my data are paired? What happens if I don’t? Do non-parametric tests compare medians? How is the Mann–Whitney U test related to the t test? How is the Mann–Whitney U test related to the area under the receiver operating characteristics curve of Chapter 5? References Chapter 10 Tests for association in binary and categorical data General chi-squared test 2 × 2 tables Small numbers: Yates’ correction, Fisher’s Exact Test and the permutation test 2 test for trend Comparison of an observed and a theoretical distribution Tests for paired binary data Examples of a paired comparison Extensions of the 2 test Common questions There are a number of tests of association for a 2 × 2 table. Which should I choose? I have matched data, but the matching criteria were very weak. Should I use McNemar’s test? Do chi-squared tests apply to large contingency tables? Is the chi-squared test a non-parametric test? Formula appreciation Reading and reporting chi-squared tests Exercises References Chapter 11 Correlation and regression The correlation coefficient Looking at data: scatter diagrams Calculation of the correlation coefficient Significance test for a correlation coefficient Spearman rank correlation The regression equation Simple checks of the model Using regression in t tests More advanced methods Common questions If two variables are correlated, are they causally related? How do I test the assumptions underlying linear regression? When should I use correlation and when should I use regression? Which are the important assumptions for linear regression? Formula appreciation Reading and reporting correlation and regression Exercises References Chapter 12 Survival analysis Why survival analysis is different Kaplan–Meier survival curve Example of calculation of survival curve The log rank test Further methods Common questions Do I need to test for a constant relative risk before doing the log rank test? If I don’t have any censored observations, do I need to use survival analysis? How does the hazard calculated under the log rank compare with the usual estimate of risk? Reading and reporting survival analysis Exercises References Chapter 13 Modelling data Basics Models Model fitting and analysis: exploratory and confirmatory analyses Bayesian methods Models generally X1 binary and X2 binary X1 continuous and X2 continuous X1 binary and X2 continuous Multiple linear regression Example linear regression Paper critique Logistic regression Logistic regression instead of a chi-squared test Example of logistic regression from the literature Paper critique Survival analysis Proportional hazards models Proportional hazards model instead of log rank Example of proportional hazards model Paper critique Other things to consider in modelling References Chapter 14 Study design and choosing a statistical test Design Sample size Choice of test Reading and reporting on the design of a study Further reading Exercises References Chapter 15 Use of computer software Chapter 2: Data display and summary Figure 2.2 Figure 2.3 Medians and five number summary Figure 2.4 Figure 2.5 Figure 2.6 Figure 2.7 Exercise 2.2 Chapter 3: Summary statistics for quantitative data Table 3.1 Table 3.2 Exercise 3.1 Exercise 3.2 Chapter 4: Summary statistics for binary data Table 4.2 Table 4.4 Table 4.8 Chapter 5: Diagnostic and screening tests Table 5.2 Table 5.3 Figure 5.3 Chapter 6: Populations and samples Chapter 7: Statements of probability and confidence intervals Figure 7.1 Exercise 7.3 Chapter 8: P values, power, type I and type II errors Figure 8.2 Chapter 9: Tests for differences between two groups of a quantitative outcome with small samples Tables 9.1 and 9.6 Table 9.2 Table 9.3 Table 9.5 Table 9.7 Exercise 9.7 Chapter 10: Tests for association in binary and categorical data Tables 10.1, 10.3 and 10.4 Table 10.8 Chapter 11: Correlation and regression Exercise 11.2 Chapter 12: Survival analysis Figure 12.2 Chapter 13: Modelling data Figure 13.1 Appendix Table A Software packages References Answers to exercises Glossary of statistical terms Appendix Index EULA