دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Franz Kronthaler
سری:
ISBN (شابک) : 3662643189, 9783662643181
ناشر: Springer
سال نشر: 2022
تعداد صفحات: 342
[343]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 15 Mb
در صورت تبدیل فایل کتاب Statistics Applied With Excel: Data Analysis Is (Not) an Art به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب آمارهای اعمال شده با اکسل: تجزیه و تحلیل داده ها (نه) یک هنر است نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب به شما نشان میدهد که چگونه مجموعه دادهها را بهطور سیستماتیک تجزیه و تحلیل کنید و از Excel 2019 برای استخراج اطلاعات از دادهها تقریباً بدون زحمت استفاده کنید. هر دو یک هنر (نه) هستند!
روش های آماری با استفاده از یک مجموعه داده ارائه شده و مورد بحث قرار می گیرند. این امر روشن می کند که چگونه روش ها بر روی یکدیگر ساخته می شوند و به تدریج می توان اطلاعات بیشتری از داده ها استخراج کرد. توابع اکسل مورد استفاده به تفصیل توضیح داده شده اند - این روش به راحتی به مجموعه داده های دیگر منتقل می شود.
عناصر آموزشی مختلف جهتگیری و کار با کتاب را تسهیل میکنند: در ایستهای بازرسی، مهمترین جنبههای هر فصل به اختصار خلاصه میشود. در بخش دانش عجیب و غریب، جنبه های پیشرفته تری برای تحریک اشتها برای مطالب بیشتر مطرح شده است. تمامی نمونه ها با دست و اکسل محاسبه می شوند. برنامه ها و راه حل های متعدد و همچنین مجموعه داده های بیشتر در پلت فرم اینترنتی نویسنده موجود است.این کتاب ترجمه ای از نسخه اصلی آلمانی 2nd است. Statistik angewandt mit Excel توسط Franz Kronthaler، منتشر شده توسط Springer-Verlag GmbH آلمان، بخشی از Springer Nature در سال 2021. ترجمه با کمک هوش مصنوعی (ترجمه ماشینی) انجام شده است. توسط سرویس DeepL.com). بازنگری انسانی بعدی عمدتاً از نظر محتوا انجام شد، به طوری که کتاب از نظر سبکی متفاوت از ترجمه معمولی خوانده میشود. Springer Nature به طور مداوم برای توسعه ابزارهای تولید کتاب و فناوری های مرتبط برای حمایت از نویسندگان تلاش می کند.
This book shows you how to analyze data sets systematically and to use Excel 2019 to extract information from data almost effortlessly. Both are (not) an art!
The statistical methods are presented and discussed using a single data set. This makes it clear how the methods build on each other and gradually more and more information can be extracted from the data. The Excel functions used are explained in detail - the procedure can be easily transferred to other data sets.
Various didactic elements facilitate orientation and working with the book: At the checkpoints, the most important aspects from each chapter are briefly summarized. In the freak knowledge section, more advanced aspects are addressed to whet the appetite for more. All examples are calculated with hand and Excel. Numerous applications and solutions as well as further data sets are available on the author's internet platform.This book is a translation of the original German 2nd edition Statistik angewandt mit Excel by Franz Kronthaler, published by Springer-Verlag GmbH Germany, part of Springer Nature in 2021. The translation was done with the help of artificial intelligence (machine translation by the service DeepL.com). A subsequent human revision was done primarily in terms of content, so that the book will read stylistically differently from a conventional translation. Springer Nature works continuously to further the development of tools for the production of books and on the related technologies to support the authors.
A Note to the Reader New Features and Additions Acknowledgements Contents List of Figures List of Tables Part I Basic Knowledge and Tools to Apply Statistics 1 Statistics Is Fun 1.1 Why Statistics? 1.2 Checkpoints 1.3 Data 1.4 Checkpoints 1.5 Scales: Lifelong Important in Data Analysis 1.6 Checkpoints 1.7 Software: Excel, SPSS, or ``R\'\' 1.8 Case Studies: The Best Way to Learn 1.9 Case Study: Growth of Young Enterprises 1.10 Applications 2 Excel: A Brief Introduction to the Statistical Tools Part II Describe, Nothing but Describe Describing People or Objects, or Simply Descriptive Statistics 3 Average Values: How People and Objects Behave in General 3.1 Average Values: For What Do We Need Them 3.2 The (Arithmetic) Mean 3.3 The Median 3.4 The Mode 3.5 The Geometric Mean and Growth Rates 3.6 What Average Value Should We Use and What else Do We Need to Know? 3.7 Calculating Averages with Excel 3.7.1 Calculating the Arithmetic Mean with Excel 3.7.2 Calculating the Median with Excel 3.7.3 Calculating the Mode with Excel 3.7.4 Calculating the Geometric Mean with Excel 3.8 Checkpoints 3.9 Applications 4 Variation: The Deviation from Average Behavior 4.1 Variation: The Other Side of Average Behavior 4.2 The Range 4.3 The Standard Deviation 4.4 The Variance 4.5 The Coefficient of Variation 4.6 The Interquartile Range 4.7 The Boxplot 4.8 Calculating Variation Measures with Excel 4.8.1 Calculating the Range (MIN, MAX) with Excel 4.8.2 Calculating the Standard Deviation with Excel 4.8.3 Calculating the Variance with Excel 4.8.4 Calculating of the Interquartile Range (First Quartile and Third Quartile) with Excel 4.9 Creating the Boxplot with Excel 4.10 Checkpoints 4.11 Applications 5 Charts: The Possibility to Display Data Visually 5.1 Charts: Why Do We Need Them? 5.2 The Frequency Table 5.3 The Frequency Charts 5.4 Absolute Frequency Chart, Relative Frequency Chart, or Histogram? 5.5 More Ways to Display Data 5.6 Creating the Frequency Table, Frequency Charts and Other Graphs with Excel 5.7 Checkpoints 5.8 Applications 6 Correlation: From Relationships 6.1 Correlation: The Joint Movement of Two Variables 6.2 The Correlation Coefficient of Bravais–Pearson for Metric Variables 6.3 The Scatterplot 6.4 The Correlation Coefficient of Spearman for Ordinal Variables 6.5 The Phi Coefficient for Nominal Variables with Two Characteristics 6.6 The Contingency Coefficient for Nominal Variables 6.7 Correlation, Spurious Correlation, Causality, and More Correlation Coefficients 6.8 Calculating Correlation Coefficients with Excel 6.8.1 Calculating the Correlation Coefficient Bravais–Pearson with Excel Using the Command Insert Function 6.8.2 Calculating the Correlation Coefficient Bravais–Pearson with Excel Using the Data Analysis Command 6.8.3 Determine the Ranks for an Ordinal Variable with Excel 6.8.4 Creating a Pivot Table with Excel 6.9 Checkpoints 6.10 Applications 7 Ratios and Indices: The Opportunity to Generate New Knowledge from Old Ones 7.1 Different Ratio Numbers 7.2 The Price and Quantity Index of Laspeyres and Paasche 7.3 Checkpoints 7.4 Applications Part III From Few to All From Few to All or from the Sample to the Population 8 Of Data and Truth 8.1 How do We Get our Data: Primary or Secondary Data? 8.2 The Random Sample: The Best Estimator for Our Population 8.3 Of Truth: Validity and Reliability 8.4 Checkpoints 8.5 Applications 9 Hypotheses: Only a Specification of the Question? 9.1 The Little, Big Thing of the (Research) Hypothesis 9.2 The Null Hypothesis H0 and the Alternative Hypothesis HA 9.3 Hypotheses, Directional or Non-directional? 9.4 How to Formulate a Good Hypothesis? 9.5 Checkpoints 9.6 Applications 10 Normal Distribution and Other Test Distributions 10.1 The Normal Distribution 10.2 The z-Value and the Standard Normal Distribution 10.3 Normal Distribution, t-Distribution, χ2-Distribution and (or) F-Distribution 10.4 Creating Distributions with Excel 10.4.1 Drawing the Normal Distribution N(100, 20) with Excel 10.4.2 Drawing the t-Distribution Curve with 15 Degrees of Freedom Using Excel 10.4.3 Drawing the χ2-Distribution Curve with 10 Degrees of Freedom Using Excel 10.4.4 Drawing the F-Distribution Curve with Two Times 15 Degrees of Freedom with Excel 10.5 Checkpoints 10.6 Applications 11 Hypothesis Test: What Holds? 11.1 What Does Statistically Significant Mean? 11.2 The Significance Level α 11.3 Statistically Significant, But also Practically Relevant? 11.4 Steps When Performing a Hypothesis Test 11.5 How do I Choose My Test? 11.6 Checkpoints 11.7 Applications Part IV Hypothesis Tests Time to Apply the Hypothesis Test 12 The Test for a Group Mean or One-Sample t-Test 12.1 Introduction to the Test 12.2 The Research Question and Hypothesis: Are Company Founders on Average 40 Years Old? 12.3 The Test Distribution and Test Statistic 12.4 The Critical Value 12.5 The z-Value 12.6 The Decision 12.7 The Test When the Standard Deviation in the Population Is Unknown or the Sample Is Small n ≤ 30 12.8 The Effect Size 12.9 Calculating the One Sample t-Test with Excel 12.10 Checkpoints 12.11 Applications 13 The Test for a Difference Between Group Means or Independent Samples t-Test 13.1 Introduction to the Test for Difference Between Group Means with Independent Samples 13.2 The Research Question and Hypothesis: Are Women and Men of the Same Age When Starting an Enterprise? 13.3 The Test Distribution and the Test Statistic 13.4 The Critical t-Value 13.5 The t-Value and the Decision 13.6 The Effect Size 13.7 Equal or Unequal Variances 13.8 Calculating the Independent Samples t-Test with Excel 13.9 Checkpoints 13.10 Applications 14 The Test for a Difference Between Means with Dependent Samples or Dependent Samples t-Test 14.1 Introduction to the Test for a Difference Between Means with Dependent Samples 14.2 The Example: Training for Enterprise Founders in the Pre-founding Phase 14.3 The Research Question and the Hypothesis in the Test: Does the Training have an Influence on the Market Potential Estimation? 14.4 The Test Statistic 14.5 The Critical t-Value 14.6 The t-Value and the Decision 14.7 The Effect Size 14.8 Calculating the Dependent Samples t-Test with Excel 14.9 Checkpoints 14.10 Applications 15 The Analysis of Variance to Test for Group Differences When There Are More Than Two Groups 15.1 Introduction to the Analysis of Variance 15.2 The Example: Do Enterprise Founders with Different Founding Motives Differ in the Amount of Time They Work? 15.3 The Research Question and the Hypothesis of the Analysis of Variance 15.4 The Basic Idea of the Analysis of Variance 15.5 The Test Statistic 15.6 The Critical F-Value 15.7 The F-Value and the Decision 15.8 The Analysis of Variance an Omnibus Test and the Bonferroni Correction 15.9 The Effect Size 15.10 The Calculation of the Analysis of Variance with Excel 15.11 Checkpoints 15.12 Applications 16 The Test for Correlation with Metric, Ordinal, and Nominal Data 16.1 The Test for a Correlation with Metric Data 16.1.1 The Test Situations for a Correlation with Metric Data 16.1.2 The Test Statistic and the Test Distribution 16.1.3 Example: Is There a Relationship Between Expenditure on Marketing and Expenditure on Innovation in Young Enterprises? 16.2 The Test for a Correlation with Ordinal Data 16.2.1 The Test Situations for a Correlation with Ordinal Data 16.2.2 The Test Statistic and the Test Distribution 16.2.3 Example: Is There a Relationship Between Self-assessment and Expectation Regarding the Economic Development of an Enterprise? 16.3 The Test for Correlation with Nominal Data 16.3.1 The Test Situations When Testing for a Correlation with Nominal Data 16.3.2 The Test of Independence for Nominal Variables with Two Characteristics 16.3.3 The Test of Independence for Nominal Variables with More Than Two Characteristics 16.4 Calculating Correlation Tests with Excel 16.5 Checkpoints 16.6 Applications 17 More Tests for Nominal Variables 17.1 The χ2-Test with One Sample: Does the Share of Female Founders Correspond to the Gender Share in Society? 17.2 The χ2-Test with Two Independent Samples: Are Start-Up Motives the Same for Service and Industrial Firms? 17.3 The χ2-Test with Two Dependent Samples: Is My Advertising Campaign Effective? 17.4 Calculating the Tests with Excel 17.5 Checkpoints 17.6 Applications 18 Summary Part IV: Overview of Test Procedures Part V Regression Analysis Regression Analysis: The Possibility to Predict What Will Happen 19 The Simple Linear Regression 19.1 Objectives of Regression Analysis 19.2 The Linear Regression Line and the Ordinary Least Squares Method 19.3 How Much do We Explain, the R2? 19.4 Calculating Simple Linear Regression with Excel 19.5 Is One Independent Variable Enough, Out-of-Sample Predictions, and Even More Warnings 19.6 Checkpoints 19.7 Applications 20 Multiple Regression Analysis 20.1 Multiple Regression Analysis: More than One Independent Variable 20.2 F-Test, t-Test and Adjusted-R2 20.3 Calculating the Multiple Regression with Excel 20.4 When Is the Ordinary Least Squares Estimate BLUE? 20.5 Checkpoints 20.6 Applications Part VI What Happens Next? 21 How to Present Results 21.1 Contents of an Empirical Paper 21.2 Example I for a Report: Is There a Difference in Founding Age Between Male and Female Founders (Fictitious) 21.3 Example II for a Report: Professional Experience and Enterprise Performance (Fictitious) 21.4 Applications 22 Advanced Statistical Methods 23 Interesting and Advanced Statistical Textbooks 24 Another Data Set to Practice A Solutions to the Applications Chapter 1 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Chapter 7 Chapter 8 Chapter 9 Chapter 10 Chapter 11 Chapter 12 Chapter 13 Chapter 14 Chapter 15 Chapter 16 Chapter 17 Chapter 19 Chapter 20 B The Standard Normal Distribution N (0,1) C The t-Distribution D The χ2-Distribution E The F-Distribution α=10% α=5% α=1%