دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: پایگاه داده ها ویرایش: نویسندگان: Hulin Wu, Jose Miguel Yamal, Ashraf Yaseen, Vahed Maroufy سری: Chapman & Hall/CRC Healthcare Informatics Series ISBN (شابک) : 0367442396, 9780367442392 ناشر: CRC Press سال نشر: 2020 تعداد صفحات: 329 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 23 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Statistics and Machine Learning Methods for EHR Data: From Data Extraction to Data Analytics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب روش های آمار و یادگیری ماشین برای داده های EHR: از استخراج داده تا تجزیه و تحلیل داده ها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
استفاده از دادههای پرونده الکترونیک سلامت (EHR)/ پرونده الکترونیک پزشکی (EMR) برای تحقیقات رایجتر میشود. با این حال، تجزیه و تحلیل این نوع داده ها به دلیل نحوه جمع آوری، پردازش و انواع سؤالات قابل پاسخ، پیچیدگی های منحصر به فردی دارد. این کتاب بسیاری از موضوعات مهم مربوط به استفاده از دادههای EHR/EMR برای تحقیق از جمله استخراج دادهها، تمیز کردن، پردازش، تجزیه و تحلیل، استنتاج و پیشبینیها را بر اساس سالها تجربه عملی نویسندگان پوشش میدهد. این کتاب به دقت مدلها و رویکردهای آماری استاندارد را با روشهای یادگیری ماشین و روشهای یادگیری عمیق مقایسه و مقایسه میکند و نتایج مقایسه بیطرفانه این روشها را در پیشبینی نتایج بالینی بر اساس دادههای EHR گزارش میدهد.
ویژگی های کلیدی:
کاربرد تجزیه و تحلیل EHR/EMR نیازمند همکاری نزدیک بین آماردانان، انفورماتیکان، دانشمندان داده و محققان بالینی/اپیدمیولوژیک است. این کتاب منعکس کننده آن دیدگاه چند رشته ای است.
The use of Electronic Health Records (EHR)/Electronic Medical Records (EMR) data is becoming more prevalent for research. However, analysis of this type of data has many unique complications due to how they are collected, processed and types of questions that can be answered. This book covers many important topics related to using EHR/EMR data for research including data extraction, cleaning, processing, analysis, inference, and predictions based on many years of practical experience of the authors. The book carefully evaluates and compares the standard statistical models and approaches with those of machine learning and deep learning methods and reports the unbiased comparison results for these methods in predicting clinical outcomes based on the EHR data.
Key Features:
The use of EHR/EMR analysis requires close collaborations between statisticians, informaticians, data scientists and clinical/epidemiological investigators. This book reflects that multidisciplinary perspective.
Cover Half Title Series Page Title Page Copyright Page Contents Preface About the Editors Contributors 1. Introduction: Use of EHR Data for Scientific Discoveries--Challenges and Opportunities 1.1. Real-World Data and Real-World Evidence: Big Data in Practice 1.2. Use of EMR/EHR Database for Research and Scientific Discoveries: Procedure and Life Cycle 1.2.1. Initiate a Project 1.2.2. Data Queries and Data Extraction 1.2.3. Data Cleaning 1.2.4. Data Pre-Processing or Processing 1.2.5. Data Preparation 1.2.6. Data Analysis, Modeling and Prediction 1.2.7. Result Validation 1.2.8. Result Interpretation 1.2.9. Publication and Dissemination 1.3. Challenges and Opportunities References 2. EHR Project Management 2.1. Introduction 2.1.1. What is Project Management? 2.1.2. Why We Need Project Management? 2.1.3. Project Management Goals and Principles 2.2. Project and Sub-Project in EHR Research 2.3. Data, Code and Product Management 2.3.1. Data Loss Prevention 2.3.2. Naming Conventions 2.3.3. Version Control 2.3.4. Coding Convention Object-Oriented or Non-Object-Oriented Programming 2.3.5. Document Management: Data Analysis Report, Papers and Read-Me Documents 2.4. Team/People Management 2.4.1. How to Form a Team: What Expertise is Needed for EHR Projects? 2.4.2. How to Efficiently Manage a Multidisciplinary Team? 2.4.3. Task Management 2.5. Management Methods and Software Tools 2.6. An Example of a Data Management Framework 2.6.1. Folder Management Naming Structure Main Folders CBD_HS Public_Folder Admin Useful_Info Group Folders Project Folders Sub_Project Folders 2.6.2. File Management Naming Structure File Submission 2.6.3. User Management User Groups 2.6.4. Data Management Framework 2.7. Discussion and Summary 2.8. Appendix--File Submission Form Note References 3. EHR Databases and Data Management: Data Query and Extraction 3.1. Introduction 3.2. EHR/EMR Database Availability and Access 3.3. EHR/EMR Database Design and Structure: Database Queries 3.3.1. Database Construction 3.3.2. Traditional Relational Database System 3.3.3. Distributed Database System 3.4. Data Extraction 3.4.1. Define Inclusion/Exclusion Criteria for Data Extraction 3.4.2. Phenotyping: Cohort Identification 3.5. Data Extraction Report 3.6. Illustration Example: Subarachnoid Hemorrhage (SAH) Project 3.6.1. EHR Database Design and Construction 3.6.2. SAH Cohort Identification and Data Extraction 3.6.3. Data Extraction Report 3.6.4. Potential Data Extraction Pitfalls and Errors with Solutions References 4. EHR Data Cleaning 4.1. Introduction 4.2. Review of Current Data Cleaning Methods and Tools 4.2.1. Data Wranglers 4.2.2. Data Cleaning Tools for Specific EHR Datasets 4.2.3. Data Quality Assessment 4.3. Common EHR Data Errors and Fixing Methods 4.3.1. List of Common Errors in an EHR Database 4.3.2. Demographics Table Multiple Race and Gender Multiple Patient Keys for the Same Encounter ID Multiple Calculated Birth Date 4.3.3. Lab Table Developing Conversion Map Conversion Map ID Convert To Conversion Equation The Lower Limit and Upper Limit Lab Date and Time User Input Form and Report Generator Output 4.3.4. Clinical Event Table Variable Combining Information Recovery A Case Study Overlap of Different Tables Correction of Misinformation 4.3.5. Diagnosis and Medication Table 4.3.6. Procedure Table Introduction to the Procedure Code Data Procedure Table Data Cleaning 4.4. Discussion Acknowledgments Notes References 5. EHR Data Pre-Processing and Preparation 5.1. Introduction 5.1.1. Definition of Data Pre-Processing/Processing 5.1.2. Definition of Data Preparation 5.2. Data Pre-Processing 5.2.1. Tidy Data Principles Variable Encoding 5.2.2. Feature Extraction: Derived Variables 5.2.3. Dimension Reduction Variable Grouping or Clustering Principle Component Analysis (PCA) Embedding and Deep Learning 5.2.4. Missing Data Imputation 5.3. Data Preparation 5.3.1. Define the Endpoint or Outcome 5.3.2. Process Medical Record Timestamps 5.3.3. Define the Encounter Time Interval 5.3.4. Encounter Combination 5.3.5. Define Comparison Groups 5.3.6. Cohort Refining 5.3.7. Leakage Detection 5.3.8. Data Preparation for Different Analysis Purposes 5.4. Data Processing/Preparation Errors and Pitfalls with Solutions 5.5. Data Pre-Processing and Preparation Report 5.6. Summary References 6. Missing Data Issues in EHR 6.1. Introduction and Overview 6.2. Missing Data Mechanisms 6.3. Methods for Incomplete EHR Data 6.3.1. Naïve Method 6.3.2. Imputation Using Statistical Models 6.3.3. Machine Learning and Deep Learning Models 6.3.4. Choice of Best Method for EHR Data 6.4. Case Study 6.4.1. Missing Condition in EHR Data 6.4.2. Missing Imputation in EHR Datasets 6.4.3. Evaluating the Performance of Imputation Methods and Thresholds 6.5. Discussion and Conclusion References 7. Causal Inference and Analysis for EHR Data 7.1. Introduction 7.1.1. Why Causal Inference 7.1.2. Overview of Causal Inference Methods: Rubin Causal Model (RCM) 7.1.3. Basic Framework in Causality: Potential Outcome Framework Average and Individual Treatment Effects 7.2. Propensity Scoring 7.2.1. Brief Introduction 7.2.2. Propensity Scoring for Binary Treatments 7.2.3. Propensity Scoring for Multiple Treatments 7.2.4. Propensity Scoring for Ordinal Treatments 7.2.5. Propensity Score Estimation for Complex Data Sets 7.2.6. Illustration Example: Subarachnoid Hemorrhage (SAH) Project 7.3. Mediation Analysis 7.3.1. Introduction to Mediation Analysis 7.3.2. The Product Method 7.3.3. The Difference Method 7.3.4. Other Considerations 7.4. Instrumental Variables Networks for Treatment Effect Estimation in the Presence of Unmeasured Confounders 7.4.1. Instrumental Variables Frameworks 7.4.2. Two-Stage Least Square Methods with Linear Models Simple Linear Models Covariance Analysis Generalized Least Square Estimator Two-Stage Least Square Method Nonlinear Models for Two-Stage Least Squares Approach 7.5. Learning Treatment Effect by Generative Adversarial Networks 7.5.1. Introduction 7.5.2. CGANs as a General Framework for Estimation of Individualized Treatment Effects The Architecture of CGANs for Generating Potential Outcomes CGANs for Estimating ITEs CGANs for Estimating ITEs in Survival Analysis 7.5.3. Wasserstein GANs for Estimation of Individualized Treatment Effects 7.5.4. MisCGANs for Estimation of Individualized Treatment Effects The General Process for Incompletely Observed Data MisGAN for Counterfactual Imputation 7.5.5. Optimal Treatment Selection Sparse Techniques for Biomarker Identification Biomarker Identification for Optimal Treatment Selection 7.6. Deconfounder in Estimation of Treatment Effects 7.6.1. Introduction 7.6.2. Causal Models with Latent Confounders 7.6.3. Adversarial Learning Confounders 7.6.4. Loss Function and Optimization for Estimating ITEs in the Presence of Confounders 7.7. Targeted Maximum Likelihood Estimation 7.8. Supplementary Note A 7.8.1. Wasserstein GAN A1 Different Distances A1.1 Maximum Likelihood Estimation A1.2 Total Variation (TV) Distance A1.3 The Kullback-Leibler (KL) Divergence A1.4 The Jenson-Shannon (JS) Divergence A1.5 Earth Mover (EM) or Wasserstein Distance A2 Wasserstein GAN A3 Algorithm (WGAN) References 8. EHR Data Exploration, Analysis and Predictions: Statistical Models and Methods 8.1. Introduction 8.1.1. Statistical Challenges for EHR Data 8.1.2. Overview of Existing Methods 8.2. Data Exploration and Visualization 8.3. Statistical Models for EHR Data 8.3.1. Contingency Tables 8.3.2. Chi-Square Test 8.3.3. Hypergeometric Test 8.4. GLM 8.5. Survival Model 8.6. Mixed-Effect Models 8.7. Time Series Analysis 8.7.1. AR, MA and ARMA Model 8.7.2. Gaussian Process 8.8. Variable Selection Methods 8.8.1. Stepwise Variable Selection 8.8.2. Purposeful Variable Selection 8.8.3. SIS 8.8.4. Penalty-Based Methods 8.9. Divide-and-Conquer Method 8.10. Validation 8.11. Results and Examples 8.12. Discussions and Conclusions References 9. Neural Network and Deep Learning Methods for EHR Data 9.1. Introduction 9.2. Deep Learning Methods for EHR Data 9.3. Deep Learning Software Tools and Implementation 9.4. Application Examples Case Study 1: Application of MLP for Mortality Prediction Case Study 2: Application of RNN for Heart Failure Prediction for Hypertension Patients Experimental Setting RNN Prediction Results 9.5. Discussion References 10. EHR Data Analytics and Predictions: Machine Learning Methods 10.1. Machine Learning Overview 10.2. Machine Learning Methods Random Forest Extremely Randomized Tree Gradient Boosting XgBoost Support Vector Machine (SVM) 10.3. Machine Learning Software Tools H2O Caret TPOT Auto-sklearn 10.4. Application Example: SAH Project Prediction Scenarios Predictors and Outcome Data Model Training Result of Outcome Prediction Evaluation of Model Performance 10.5. Conclusion and Recommendation References 11. Use of EHR Data for Research: Future 11.1. Future EHR Research 11.2. Post-Research Practice 11.3. Summary References Index