دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 3
نویسندگان: Massimiliano Bonamente
سری: Graduate Texts in Physics
ISBN (شابک) : 9789811903649, 9789811903656
ناشر: Springer Singapore
سال نشر: 2022
تعداد صفحات: 491
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 9 مگابایت
در صورت تبدیل فایل کتاب Statistics and Analysis of Scientific Data به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب آمار و تجزیه و تحلیل داده های علمی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Foreword Preface Acknowledgments Contents Part I Probability, Random Variables and Statistics 1 Theory of Probability 1.1 Experiments and Events 1.2 Probability of Events 1.2.1 The Kolmogorov Axioms 1.2.2 Frequentist or Classical Method 1.2.3 Bayesian or Empirical Method 1.2.4 Fundamental Properties of Probability 1.3 The Conditional Probability 1.4 Statistical Independence 1.5 A Classic Experiment: Mendel's Experiments on Plant Hybridization 1.6 The Total Probability Theorem and Bayes' Theorem 2 Random Variables and Their Distributions 2.1 Random Variables 2.2 Probability Distribution Functions 2.3 Expectations and Moments of a Distribution Function 2.3.1 The Mean and the Sample Mean 2.3.2 The Law of Large Numbers 2.3.3 The Variance and the Sample Variance 2.4 A Classic Experiment: J.J. Thomson's Discovery of the Electron 2.5 Covariance and Correlation Between Random Variables 2.5.1 Joint Distribution and Moments of Two Random Variables 2.5.2 Statistical Independence of Random Variables 2.6 The Expectation of the Sample Variance and Sample Covariance 2.7 A Classic Experiment: Pearson's Collection of Data on Biometric Characteristics 3 Three Fundamental Distributions: Binomial, Gaussian, and Poisson 3.1 The Binomial Distribution 3.1.1 Derivation of the Binomial Distribution 3.1.2 Moments of the Binomial Distribution 3.2 The Gaussian Distribution 3.2.1 Derivation of the Gaussian Distribution from the Binomial Distribution 3.2.2 Moments and Properties of the Gaussian Distribution 3.3 The Poisson Distribution 3.3.1 Derivation of the Poisson Distribution 3.3.2 Moments and Properties of the Poisson Distribution 3.3.3 The Poisson Distribution and the Poisson Process 3.4 Comparison of the Binomial, Gaussian, and Poisson Distributions 4 The Distribution of Functions of Random Variables 4.1 Functions of Random Variables 4.2 Linear Combination of Random Variables 4.2.1 Mean and Variance Formulas 4.2.2 Independent Measurements and the 1/sqrtN Factor 4.3 The Moment Generating Function 4.3.1 Properties of the Moment Generating Function 4.3.2 Moment-Generating Functions of Selected Distributions 4.4 The Central Limit Theorem 4.4.1 The Distribution of the Sample Mean of Gaussian Measurements 4.4.2 The Distribution of the Sum of Standard Uniform Random Variables 4.4.3 Certain Limitations of the Central Limit Theorem 4.5 The Distribution of Functions of Random Variables 4.5.1 The Method of Change of Variables 4.5.2 Direct Method Using the Distribution Function 5 Error Propagation and Simulation of Random Variables 5.1 The Mean of Functions of Random Variables 5.2 The Variance of Functions of Random Variables and Error Propagation Formulas 5.2.1 Sum and Product of a Constant 5.2.2 Weighted Sum of Two Variables 5.2.3 Product and Division of Two Random Variables 5.2.4 Power of a Random Variable 5.2.5 Exponential of a Random Variable 5.2.6 Logarithm of a Random Variable 5.3 The Quantile Function and Simulation of Random Variables 5.3.1 General Method to Simulate a Variable 5.3.2 Simulation of a Gaussian Variable 6 Maximum Likelihood and Other Methods to Estimate Variables 6.1 Estimating Random Variables with Data 6.2 The Maximum-Likelihood Method 6.2.1 Maximum-Likelihood Methods for a Gaussian Variable 6.2.2 Maximum-Likelihood Estimate of the Gaussian Mean for Non-uniform Uncertainties 6.3 The Maximum-Likelihood Method for the Poisson and Other Distributions 6.4 Method of Moments 6.5 Method of Maximum Entropy 7 Methods of Inference and Confidence Intervals of Random Variables 7.1 Quantiles and Confidence Intervals 7.2 Fiducial Inference 7.3 Confidence Intervals for a Gaussian Variable 7.4 Upper and Lower Limits for a Gaussian Variable 7.5 Confidence Intervals for the Mean of a Poisson Variable 7.6 The Gehrels Approximation for Poisson Upper and Lower Limits 7.7 Bayesian Methods of Inference 7.7.1 Bayesian Expectation of the Poisson Mean 7.7.2 Bayesian Confidence Intervals for a Poisson Variable 8 Average Values of Random Variables 8.1 Point Estimates and Average Values 8.2 Linear and Weighted Averages 8.3 The Median 8.4 The Logarithmic Average and Fractional Errors 8.4.1 The Log-Normal Distribution 8.4.2 The Weighted Logarithmic Average 8.4.3 The Relative-Error Weighted Average Problems Part II Hypothesis Testing, Regression and Parameter Estimation 9 Hypothesis Testing and Fundamental Statistics 9.1 Statistics and Hypothesis Testing 9.2 The P-Value of a Statistical Analysis 9.3 The χ2 Statistic 9.3.1 The Probability Distribution Function 9.3.2 Moments and Other Properties 9.3.3 Hypothesis Testing 9.4 The Distribution of the Sample Variance 9.5 The F-Statistic 9.5.1 The Probability Distribution Function 9.5.2 Moments and Other Properties 9.5.3 Hypothesis Testing 9.6 The Sampling Distribution of the Mean and Student's t-Statistic 9.6.1 Student's t-Statistic for the Sample Mean 9.6.2 Hypothesis Testing with the t-Statistic 9.6.3 Comparison of Two Sample Means and Hypothesis Testing 10 Contingency Tables and Diagnostic Tests 10.1 A Classic Experiment: The 1915 Greenwood and Yule Inoculation Statistics 10.2 2 times2 Contingency Tables 10.2.1 The χ2 Test 10.2.2 χ2 Test with the Yates Continuity Correction 10.2.3 The Fisher Exact Test for 2 times2 Contingency Tables 10.2.4 Exact Tests Based on the Binomial Distribution 10.3 Higher Dimension r timesc Contingency Tables 10.4 Binary Diagnostic Tests 10.4.1 Sensitivity, Specificity, and Likelihood Ratios 10.4.2 Posterior Probabilities: The Positive and Negative Predictive Values 10.4.3 Change in Posterior Probability with Repeated Testing 10.5 Vaccine Efficacy 11 Linear and Non-linear Regression for Gaussian Data 11.1 Measurement of Pairs of Variables and Regression 11.2 Regression Using Maximum Likelihood for Gaussian Data 11.3 Linear Regression with Gaussian Data 11.4 Multiple Linear Regression 11.5 Linear Regression with Uniform Variance 11.5.1 Alternative form of the Solution with Sample Moments 11.5.2 Choice of Independent Variable 11.6 A Classic Experiment: Edwin Hubble's Discovery of the Expansion of the Universe 11.7 Non-linear Regression 12 Goodness of Fit and Parameter Uncertainty for Gaussian Data 12.1 The χ2min Goodness-of-Fit Statistic 12.2 Data with No Errors and the Model Sample Variance 12.3 The Δχ2 Statistic 12.4 Confidence Intervals of Model Parameters 12.5 Confidence Intervals on a Reduced Number of Parameters 13 Multi-variable Regression 13.1 Multi-variable Datasets 13.2 A Classic Experiment: The R.A. Fisher and E. Anderson Measurements of Iris Characteristics 13.3 The Multi-variable Linear Regression 13.4 Multi-variable Linear Regression with Uniform Variance 13.5 Goodness of Fit of Multi-variable Regression 13.6 Tests for the Significance of Multiple Regression Coefficients 13.6.1 t-Test for the Significance of Model Components 13.6.2 F-Test for the Significance of the a1, …, am Parameters 13.6.3 The Coefficient of Determination 14 The Linear Correlation Coefficient 14.1 Linear Regression and Choice of the Independent Variable 14.2 The Linear Correlation Coefficient 14.3 Sampling Distribution of r and Hypothesis Testing 14.4 Distribution of the Coefficient of Determination R2 and of r2 15 Low-Count Poisson Data and the Cash Statistic 15.1 Poisson Data with Integer-Valued Variables 15.2 Likelihood of Poisson Data and the Cash Statistic 15.3 Distribution of the Cash Statistic for a Fully Specified Model 15.3.1 Asymptotic Values for the Mean and Variance 15.3.2 Analytical Approximations for the Mean and Variance 15.3.3 Other Useful Formulas for the Moments 15.4 Hypothesis Testing with the C Statistic 16 Maximum Likelihood Methods and Parameter Estimation with the Cash Statistic 16.1 Maximum Likelihood Methods for Poisson Data 16.2 Linear Regression with Poisson Data 16.2.1 The Standard Linear Model 16.2.2 A Factorized Linear Model with a Semi-Analytical Solution 16.2.3 An Extended Linear Model 16.2.4 Non-Uniform Bin Size and Gaps in the Data 16.3 Goodness of Fit and Hypothesis Testing with the Cash Statistic 16.3.1 The Wilks Theorem on the Likelihood Ratio 16.3.2 The Large-Count Regime 16.3.3 The Low-Count Regime 16.3.4 Approximate Methods in the Low-Count Regimes 16.4 Parameter Estimation with the C statistic 16.5 Biases Using χ2 for Poisson Data in the Large-Count Limit 17 Systematic Errors and Intrinsic Scatter 17.1 What to Do When the Goodness-of-Fit Test Fails 17.2 Intrinsic Scatter and the Debiased Variance 17.2.1 Direct Calculation of the Intrinsic Scatter 17.2.2 Alternative Method for Gaussian Data 17.3 Systematic Errors 17.4 Estimate of Model Parameters with Systematic Errors or Intrinsic Scatter 18 Regression with Bivariate Errors 18.1 Two-Variable Data with Bivariate Errors 18.2 Least-Squares Linear Fit to Data with Bivariate Errors 18.3 Linear Fit Using Bivariate Errors in the χ2 Statistic 19 Model and Data Comparison 19.1 The χ2min Statistic and the F-Test for Gaussian Data 19.2 F-Test for Two Independent χ2 Measurements 19.3 F-Test for an Additional Model Component 19.4 Kolmogorov–Smirnov Tests 19.4.1 Comparison of Data to a Model 19.4.2 Two-Sample Kolmogorov–Smirnov Test Part III Monte Carlo Methods 20 Monte Carlo and Re-sampling Methods 20.1 What is a Monte Carlo Analysis? 20.2 Traditional Monte Carlo Integration 20.3 Hit-or-Miss Monte Carlo Methods 20.4 Simulation of Random Variables 20.5 Re-sampling Methods 20.6 The Jackknife Method 20.7 The Bootstrap Method 21 Introduction to Markov Chains 21.1 Stochastic Processes and Markov Chains 21.2 Mathematical Properties of Markov Chains 21.3 Recurrent and Transient States 21.4 Limiting Probabilities and Stationary Distribution 21.5 Ergodic Averages and Variance Estimates 22 Markov Chain Monte Carlo 22.1 Introduction to Markov Chain Monte Carlo Methods 22.2 Markov Chain Monte Carlo for Regression Analysis 22.3 The Metropolis–Hastings MCMC 22.4 The Gibbs Sampler 22.5 Convergence of Markov Chain Monte Carlo 22.6 The Geweke z-Score Convergence Test 22.7 The Gelman–Rubin Convergence Test 22.8 The Raftery–Lewis Diagnostic 22.9 Inference with MCMC 23 Numerical Methods and python Codes 23.1 Analytical and Numerical Methods 23.2 Introduction to python 23.3 General Features of python Codes for this Textbook 23.3.1 Structure of the Codes 23.3.2 Functions, Library Import and Settings 23.3.3 Data Associated with the Codes 23.4 Description of Codes 23.5 Numerical Methods for Tables in Appendix Appendix Appendix: Numerical Tables A.1 The Gaussian Distribution and the Error Function A.2 Upper and Lower Limits for a Poisson Distribution A.3 The Gamma and Beta Distributions and Functions A.4 The χ2 Distribution A.5 The F Distribution A.6 The Student t Distribution A.7 The Linear Correlation Coefficient r A.8 The Kolmogorov–Smirnov Statistics Appendix References Index