دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Xinguang Chen (editor). (Din) Ding-Geng Chen (editor)
سری:
ISBN (شابک) : 3030352595, 9783030352592
ناشر: Springer
سال نشر: 2020
تعداد صفحات: 420
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 28 مگابایت
در صورت تبدیل فایل کتاب Statistical Methods for Global Health and Epidemiology: Principles, Methods and Applications (ICSA Book Series in Statistics) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب روشهای آماری برای سلامت جهانی و اپیدمیولوژی: اصول، روشها و کاربردها (سری کتابهای ICSA در آمار) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب روش ها و مدل های آماری مورد استفاده در زمینه های بهداشت جهانی و اپیدمیولوژی را بررسی می کند. این شامل روش هایی مانند نمونه گیری احتمالی نوآورانه، هماهنگ سازی و رمزگذاری داده ها، و روش های پیشرفته توصیفی، تحلیلی و نظارتی است. کدهای برنامه با استفاده از R و همچنین نمونه های داده واقعی گنجانده شده است. بهداشت جهانی و اپیدمیولوژی معاصر شامل چالش های پزشکی و بهداشتی بی شماری از جمله نابرابری در درمان، اپیدمی HIV/AIDS و کنترل بعدی آن، آنفولانزا، سرطان، کنترل تنباکو، مصرف مواد مخدر و آلودگی محیطی است. علاوه بر مقیاس های وسیع و چشم انداز تلسکوپی. پرداختن به نگرانیهای بهداشت جهانی اغلب شامل بررسی جمعیتهای محدود با منابع با تنوع جغرافیایی و اقتصادی اجتماعی بزرگ است. بنابراین، پیشرفت بهداشت جهانی نیازمند طراحی اپیدمیولوژیک جدید، داده های جدید و روش های جدید برای نمونه گیری، پردازش داده ها و تجزیه و تحلیل آماری است. این کتاب روش هایی را در اختیار محققان بهداشت جهانی قرار می دهد که امکان دسترسی و استفاده از داده های موجود را فراهم می کند. این کتاب با مشارکت محققان اپیدمیولوژیک و آمار زیستی، منبعی کاربردی برای محققان، پزشکان و دانشجویان در حل مشکلات بهداشت جهانی در تحقیقات، آموزش، آموزش و مشاوره است.
This book examines statistical methods and models used in the fields of global health and epidemiology. It includes methods such as innovative probability sampling, data harmonization and encryption, and advanced descriptive, analytical and monitory methods. Program codes using R are included as well as real data examples. Contemporary global health and epidemiology involves a myriad of medical and health challenges, including inequality of treatment, the HIV/AIDS epidemic and its subsequent control, the flu, cancer, tobacco control, drug use, and environmental pollution. In addition to its vast scales and telescopic perspective; addressing global health concerns often involves examining resource-limited populations with large geographic, socioeconomic diversities. Therefore, advancing global health requires new epidemiological design, new data, and new methods for sampling, data processing, and statistical analysis. This book provides global health researchers with methods that will enable access to and utilization of existing data. Featuring contributions from both epidemiological and biostatistical scholars, this book is a practical resource for researchers, practitioners, and students in solving global health problems in research, education, training, and consultation.
Preface Contents List of Contributors List of Reviewers About the Editors Part I Data Acquisition and Management 1 Existent Sources of Data for Global Health and Epidemiology 1.1 Introduction 1.2 Country Codes, Population and Geographic Area Data 1.2.1 Standard Country Codes 1.2.2 Population Data by Country 1.2.3 Geographic Area Data by Country 1.2.4 Data from the Internet World Stats 1.2.5 Data from Wikipedia 1.3 Data for Socioeconomic Status and Vital Statistics 1.3.1 Data from the World Health Organization 1.3.2 Data from the World Bank 1.4 Data on Important Social, Legal and Religious Factors by Country 1.4.1 Data for Measuring Press Freedom 1.4.2 World Index of Moral Freedom 1.4.3 Country Profile of Religions 1.5 Data on Disease Statistics 1.5.1 Data for Global Cancer Statistics 1.5.2 Data for Global Cardiovascular Disease Statistics 1.5.3 Data for Global Infectious Disease Statistics 1.5.4 Data for Causes of Death in the United States 1.6 Data on Global Tobacco and Substance Use 1.6.1 Tobacco Use and Prevention 1.6.2 Alcohol Use 1.7 Data for Measuring Suicide by Countries in the World 1.8 Data on Physicians, Nurses and Hospital Beds 1.9 Important Surveys with International and Global Coverages 1.9.1 The Demographic and Health Surveys 1.9.2 Global School-Based Student Health Survey 1.9.3 Health Behavior in School-Aged Children 1.9.4 International Social Survey Program 1.9.5 Multiple Indicator Cluster Survey 1.9.6 World Health Survey 1.9.7 The World Mental Health Survey Initiative 1.9.8 World Value Survey 1.10 Summary References 2 Satellite Imagery Data for Global Health and Epidemiology 2.1 Introduction 2.2 USGS Data 2.2.1 Introduction of Earth Explorer (EE) 2.2.2 Steps to Access USGS Data Using EE 2.3 UNEP Data of United Nations Environmental Program (UNEP) 2.3.1 Introduction of the Environmental Data Explorer of UNEP 2.3.2 Steps to Access UNEP Data 2.4 NASA Earth Science Data 2.4.1 Introduction of the Earth Science Data 2.4.2 Steps to Access Earth Science Data 2.5 Sentinel Satellite Data 2.5.1 Introduction of the Sentinel Satellite Data 2.5.2 Steps to Access the Sentinel Satellite Data 2.6 Global ALOS 3D World Data 2.6.1 Introduction of the Global ALOS 3D World 2.6.2 Steps to Access the ALOS 3D World Data 2.7 Earth Online Data 2.7.1 Introduction to the EO Data 2.7.2 The Steps of Access Earth Online Data 2.8 Additional Sources of Data 2.8.1 Comprehensive Large Array-Data Stewardship System (CLASS) 2.8.2 National Institute for Space Research (INPE) 2.8.3 Himawari Monitor Data of Japanese Meteorological Agency (JMA) 2.8.4 The AErosol RObotic NETwork (AERONET) 2.8.5 Bhuvan India Geo-Platform of ISRO 2.9 Conclusion Remark References 3 GIS/GPS-Assisted Probability Sampling in Resource-Limited Settings 3.1 Study Population and Samples 3.2 Non-probability Sampling 3.2.1 Purposeful Sampling 3.2.2 Convenience Sampling 3.3 Probability Sampling 3.3.1 Know the Probability for Sampling 3.3.2 Independent Identical Sample Distribution 3.3.3 Generalizability to the Study Population 3.4 Challenges to the Classic Probability Sampling Methods and Alternatives 3.4.1 Methodology Barriers 3.4.2 Hard-to-Reach or Hidden Populations 3.4.3 Urgency to Know Study Results 3.4.4 Application of GIS/GPS Technologies in Probability Sampling 3.5 Challenges to the Existing GIS/GPS-Assisted Probability Sampling Methods 3.5.1 Challenges to Determine Sample Size Before Sampling 3.5.2 Challenges to Distinguishing Residential from Non-residential Housing 3.5.3 Challenges Due to Heterogeneity in Population Density 3.5.4 Challenges to Determine the Geographic Sample Weights 3.6 GIS/GPS Assisted Multi-stage Probability Sampling 3.6.1 Introduction to the Method 3.6.2 Stage 1 Sampling: Random Selection of Geographic Units 3.6.3 Stage 2 and 3: Random Selection of Geographic Segments and Households 3.6.4 Stage 4: Random Selection of Participants from Households 3.6.5 Complementary Data Collection 3.7 Methods to Determine Residential Areas 3.7.1 Method 1. Estimate Residential Area with Collected Data 3.7.2 Method 2. Estimate Residential Area with Monte Carlo Method 3.8 Estimate of Sample Weights 3.9 Practical Test of the Method in an NIH Funded Project 3.9.1 Geographic Sampling Frame and Geounits 3.9.2 Sampling Geographic Segments, Households and Participants 3.9.3 Determination of Residential Area with Imagery Data and GPS-Tracking File 3.10 Strengths and Recommendation 3.10.1 Strengths 3.10.2 Recommendations for Application Appendix 1: R Program Codes for a Semi-automatic, Computer-Assisted, and Step-Wise Algorithm for Geounit Sampling Appendix 2: R Program Codes for Monte Carlo Method to Determine Residential Area References 4 Construal Level Theory Supported Method for Sensitive Topics: Applications in Three Different Populations 4.1 Introduction 4.1.1 Factors Affecting the Quality of Survey Data 4.1.2 Cognitive Censoring and Social Desirability Bias 4.1.3 Existing Methods to Reduce Social Desirability Bias 4.2 Theoretical and Analytical Foundations 4.2.1 Construal-Level Theory and Social Desirability Bias 4.2.2 The Measurement Theory Underpinning of CLT-Based Survey 4.2.3 Statistical Modeling of CLT-Based Survey Data 4.2.4 Bifactor and Tri-factor Modeling Analysis of CLT-Based Data 4.3 Detecting the Sensitive of a Question Using CLT-Based Method 4.3.1 Participants and Procedures 4.3.2 Statistical Analysis and Results 4.3.3 Summary 4.4 Application of CLT-Based Method in an Urban Population 4.4.1 Participants and Procedures 4.4.2 Conventional and CLT-Based Brief Sexual Openness Scale 4.4.3 Variable for Predictive Validity Analysis 4.4.4 Statistical Analysis 4.4.5 Sample Characteristics 4.4.6 Performance of the BSOS as a Conventional Scale 4.4.7 Performance of the CLT-Based Method for Assessing Single Questions 4.4.8 Construct Validity of CLT-Based Method as a Multi-contents Instrument 4.4.9 Separation of Three Factors Based on CLT-Based Data 4.4.10 Bias Assessment 4.4.11 Predictive Validity 4.4.12 Summary 4.5 Application of the CLT-Based Method in an Rural Sample 4.5.1 Data Sources and Participants 4.5.2 BSOS as Conventional and CLT-Based Scale 4.5.3 Variables for Validity Assessment 4.5.4 Statistical Analysis 4.5.5 Sample Characteristics 4.5.6 Results from Tri-factor Analysis 4.5.7 Predictive Validity 4.5.8 Summary 4.6 Discussion and Conclusions 4.6.1 Theoretical Framework of the CLT-Based Method 4.6.2 Empirical Support for the CLT-Based Method 4.6.3 Recommendations and Future Research References 5 Integrative Data Analysis and the Study of Global Health 5.1 Pooled Data Analysis and Global Health Research 5.2 Integrative Data Analysis 5.2.1 Defining Integrative Data Analysis 5.2.2 Research Questions Suitable for IDA 5.3 Measurement Harmonization 5.3.1 Need for Measurement Harmonization 5.3.2 Logical Harmonization 5.4 Harmonization 5.4.1 Psychometric Harmonization and IDA 5.4.2 Psychometric Harmonization Model 5.5 Illustrative Example 5.5.1 Logical Harmonization of Individual Items 5.5.2 Steps 1 and 2: Descriptive Analysis 5.5.3 Step 3: Iterative MNLFA 5.5.4 Step 4: Examine MNLFA Scores 5.6 Hypothesis Testing in IDA 5.6.1 Challenges to Hypothesis Testing 5.6.2 Another Example of IDA in Global Health Research 5.7 Advances in IDA Methods 5.7.1 New Regularization Method to Identify DIF Items 5.7.2 Trifactor Modeling Method 5.7.3 Summary and Conclusions Technical Appendix: Moderated Nonlinear Factor Analysis (MNLFA) Initial Models Simultaneous Model Final Model References 6 Introduction to Privacy-Preserving Data Collection and Sharing Methods for Global Health Research 6.1 Introduction 6.2 Randomized Response Technique and Its Extensions 6.3 Warner\'s Method 6.3.1 Principles and Method 6.3.2 Application of Warner\'s Method in Study Risky Behaviors Among College Students 6.3.3 Limitations of Warner\'s Method 6.3.3.1 Other Extensions of Warner\'s Method 6.4 More Sophisticated Randomized Response Techniques: RAPPOR 6.5 Random Orthogonal Matrix Masking (ROMM)for Data Sharing 6.5.1 Basic Principles and Methodology 6.5.2 Examples of Random Transformation 6.6 Triple Matrix-Masking (TM2) Methods 6.6.1 Principles and Methodology 6.6.2 Extensions of TM2 Methods 6.7 Conclusion Remarks References Part II Essential Statistical Methods 7 Geographic Mapping for Global Health Research 7.1 Importance of Global Mapping 7.2 Preparation for Geographic Mapping 7.2.1 Brief Introduction to R and R Studio 7.2.2 Download and Install R 7.2.3 Download and Install R Studio 7.2.4 Work Around R Studio 7.3 R Packages for Geographic Mapping 7.3.1 R Packages Needed 7.3.2 Download and Install the Related R Packages 7.4 Mapping the World Using R 7.4.1 Creating a Base World Map 7.4.2 Change Map Projections for Best View 7.4.3 Map Rotation for a Different Central View 7.4.4 An Example with Both Projection and Rotation 7.5 Geographic Mapping of the World Population: A Practical Example 7.5.1 Steps to Map a Subject Matter 7.5.2 Data Preparation 7.5.3 Mapping Your Data 7.6 Mapping the Density of World Population by Country 7.7 Conclusion Remarks Appendix References 8 A 4D Indicator System of Count, P Rate, G Rate and PG Rate for Epidemiology and Global Health 8.1 Introduction 8.2 Ending the HIV/AIDS Epidemic by 2030 8.3 Four-Dimensional Measurement System 8.3.1 Two Conventional Measure of Headcount and P Rate 8.3.2 Two New Measures of G Rate and P Rate 8.4 An Example of Global HIV Epidemic 8.4.1 Materials and Method 8.4.2 Estimation of P Rate, G Rate and PG Rate 8.4.3 Geographic Mapping 8.5 Results 8.5.1 The Global HIV Epidemic Measured by Headcounts of PLWH 8.5.2 The Global HIV Epidemic Measured by P Rates of PLWH 8.5.3 The Global HIV Epidemic Measured by G Rates of PLWH 8.5.4 The Global HIV Epidemic Measured by PG Rates of PLWH 8.6 Discussion and Conclusion Remarks A.1 Appendix 1. List of countries with population, land area, total PLWH, P rate, G rate and PG rate References 9 Historical Trends in Mortality Risk over 100-Year Period in China with Recent Data: An Innovative Application of Age-Period-Cohort Modeling 9.1 Introduction 9.1.1 Learn from History 9.1.2 Challenges for Quantitative Historical Research 9.2 Timeline of Significant Events in China Since 1900 9.2.1 Overthrow of the Feudalistic Society 9.2.2 Early Period After Independence 9.2.3 The Period of Open Policy and Economic Reform 9.3 Age-Specific Data and APC Modeling Analysis 9.3.1 Age-Specific Data as Digital Fossils 9.3.2 APC Model to Extract the Historical Information 9.3.3 Challenges to APC Modeling 9.3.4 New Data Selection Method to Correctly Estimate Cohort Effect 9.3.5 Using Single Year of Data 5 Years Apart as a Solution 9.4 Materials and Methods 9.4.1 Source of Data 9.4.2 APC Modeling Analysis 9.5 Main Study Findings 9.5.1 Visual Presentation of the Mortality Data 9.5.2 Comparison of Results from Four Different APC Models 9.5.3 Period Effect for Mortality Risk Change over 1990–2010 9.5.4 Changes in Cohort Effect Through Numerical Differentiation 9.5.5 Sunny Periods in Historical China 9.5.6 Cloudy Period in Historical China 9.6 Discussion and Conclusions 9.6.1 Findings and Implications for China 9.6.2 Economic and Technic Advancement Not Equal to Good Health 9.6.3 APC Modeling for Historical Epidemiology 9.6.4 Implication for Research in Other Countries 9.6.5 Limitations and Conclusion Remarks References 10 Moore-Penrose Generalized-Inverse Solution to APC Modeling for Historical Epidemiology and Global Health 10.1 Introduction 10.2 APC Model and Its Estimation 10.2.1 An Introduction to APC Model 10.2.2 Solving APC Using MP Method 10.3 Application with Real Data 10.3.1 Data Source and Arrangement 10.3.2 Modeling Analysis with MP-APC 10.3.3 Comparison with Results from IE-APC 10.4 Relationship Between IE-APC and MP-APC 10.4.1 IE-APC Modeling 10.4.2 MP-APC Modeling 10.5 Discussion and Conclusions Appendix: R Program for MP-APC References 11 Mixed Effects Modeling of Multi-site Data-Health Behaviors Among Adolescents in Hong Kong, Macao, Taipei, Wuhan and Zhuhai 11.1 Introduction 11.2 Methodology Challenge and Alternatives 11.2.1 Heterogeneity Data for Global Health Research 11.2.2 Understand Multi-site and Multi-level Data 11.3 A Study Across Five Chinese Cities: An Example 11.3.1 Purposes and Rational 11.3.2 Participants and Procedure 11.3.3 Measurement of Lifestyle Behavior 11.3.4 Measurement of Addictive Behaviors 11.3.5 Measurement of Student-Level Factors 11.3.6 Measurement of Site-Level Factors 11.4 Statistical Analysis and Results 11.4.1 Data Analysis 11.4.2 Study Site and Sample 11.4.3 Prevalence of Life Style Variables 11.4.4 Prevalence of Addictive Behaviors 11.4.5 Intraclass Correlation for the Variable Time on Siting Position 11.4.6 Results from Mixed Effects Model and Linear Regression 11.5 Discussion and Conclusions 11.5.1 Significance of the Mixed Effects Modeling Methods 11.5.2 Implications of the Findings from This Study References 12 Geographically Weighted Regression 12.1 Introduction 12.2 Theory 12.2.1 Basic Model Structure and Inference 12.2.2 Constructing Weights 12.2.3 Testing Spatial Nonstationarity 12.2.4 Geographically Weighted Generalized Linear Models 12.2.5 Colinearity and Remedies Local Linear Estimation Regularized Fitting 12.3 Software and Case Study 12.3.1 Data 12.3.2 Data Analysis with R Packages 12.3.3 Conclusion References Part III Advanced Statistical Methods 13 Bayesian Spatial-Temporal Disease Modeling with Application to Malaria 13.1 Introduction 13.2 Spatial-Temporal Data in Nigeria 13.2.1 Study Area 13.2.2 Country Profile 13.2.3 Ethical Approval 13.2.4 Predictor Variables 13.3 Statistical Methodology 13.3.1 Malaria Spatial-Temporal Modeling Data Distribution Spatial-Temporal Mixed-Effects Regression Model 13.4 Bayesian Spatial-Temporal Models with INLA 13.4.1 Goodness of Fit Statistics 13.5 Results 13.6 Conclusion and Summary of Findings A.1 Appendix 1: R Program Codes for Analysis. References 14 BCEWMA: A New and Effective Biosurveillance System for Disease Outbreak Detection 14.1 Introduction 14.2 Some Basic SPC Concepts and Methods 14.3 A New Biosurveillance System 14.3.1 A Baseline Model and Its Estimation 14.3.2 Sequential Monitoring of Disease Incidence Rates 14.4 Real Data Examples 14.4.1 The Hand, Foot and Mouth Disease Data 14.4.2 The Influenza-Like-Illness Data 14.5 Concluding Remarks References 15 Cusp Catastrophe Regression Analysis of Testosterone in Bifurcating the Age-Related Changes in PSA, a Biomarker for Prostate Cancer 15.1 Introduction 15.1.1 Challenges to Using PSA as Prostate Cancer Screener 15.1.2 Age Pattern of PSA Changes 15.1.3 Relationship Between Testosterone and PSA 15.1.4 A Cusp Catastrophe Model of PSA as Function of Age and Testosterone 15.1.5 Purpose of This Study 15.2 Materials 15.2.1 Participants and Data 15.2.2 Variables and Measurement 15.3 Statistical Analysis and Cusp Modeling 15.3.1 Statistical Analysis 15.3.2 Cusp Catastrophe Modeling 15.4 Analytical Findings 15.4.1 Sample Characteristics 15.4.2 Results from Linear Correlation Analysis 15.4.3 Results from Linear Regression Modeling 15.4.4 Bimodality of the PSA Level in Men 15.4.5 Results from Cobb-Grasman Cusp Modeling 15.4.6 Results from Chen-Chen Cusp Regression Modeling 15.4.7 Cusp Point, Threshold Lines and Cusp Region 15.5 Discussion and Conclusions 15.5.1 PSA Dynamics Is Nonlinear and Discrete 15.5.2 Co-use of Testosterone and PSA for Screening 15.5.3 Limitations and Future Research References 16 Logistic Cusp Catastrophe Regression for Binary Outcome: Method Development and Empirical Testing 16.1 Background 16.1.1 Cusp Catastrophe for Nonlinear Discrete Systems 16.1.2 Established Methods for Cusp Catastrophe Modeling 16.1.3 Need for Methods to Model Binary Data 16.2 An Overview of the Cusp Catastrophe Model 16.2.1 Deterministic Cusp Model 16.2.2 Characteristics of the Cusp Catastrophe Model 16.3 Implementation of a Cusp Catastrophe Model 16.3.1 Guastello\'s Polynomial Approach 16.3.2 Cobb-Grasman\'s Approach 16.3.3 Chen-Chen\'s Cusp Regression Approach 16.4 Cusp Catastrophe Modeling of Binary Data 16.4.1 The Binary Data Structure 16.4.2 The Binary Cusp Catastrophe Model 16.4.3 Maximun Likelihood Estimation 16.4.4 Cusp Catastrophe Conventions 16.4.5 Cusp Region Estimation 16.4.6 Numeric Search Algorithms for Parameter Estimates 16.5 Test the Logistic Cusp Catastrophe Model Through Monte-Carlo Simualtion 16.5.1 Model Settings for Simulation 16.5.2 Steps of Simulation Study 16.5.3 Results and Interpretation 16.6 Modeling Analysis with Real Data: Binge Drinking 16.6.1 Data Sources and Variables 16.6.2 Modeling Analysis 16.6.3 Parameter Estimates and Comparison 16.6.4 Comparison of the Estimated Cusp Regions 16.7 Discussion and Conclusions References Correction to: Statistical Methods for Global Health and Epidemiology Index