دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [4 ed.] نویسندگان: Donna L. Mohr, Rudolf Jakob Freund, William J. Wilson, Rudolf Jakob Freund سری: ISBN (شابک) : 9780323899888, 0323899889 ناشر: Academic Press is an Imprint of Elsevier سال نشر: 2022 تعداد صفحات: [767] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 11 Mb
در صورت تبدیل فایل کتاب Statistical methods به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب روش های آماری نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
روشهای آماری، ویرایش چهارم، برای آشنا کردن دانشآموزان با طیف وسیعی از تکنیکهای آماری رایج و کاربردی طراحی شده است. این رشته که به حداقل ریاضیات پیشرفته نیاز دارد، برای دانشجویان رشته آمار یا دانشجویان کارشناسی ارشد در رشته های فیزیکی، زندگی و علوم اجتماعی مناسب است. این متن با ارائه یک نمای کلی از استدلال آماری، خوانندگان را با بینش لازم برای خلاصه کردن دادهها، تشخیص طرحهای آزمایشی خوب، اجرای تحلیلهای مناسب و دستیابی به تفاسیر صحیح از نتایج آماری مجهز میکند. شامل مطالعات موردی و تمرینهای گسترده برگرفته از رشتههای مختلف ارائه مشکلات تمرینی برای هر فصل با راهحلهای کامل.
Statistical Methods, Fourth Edition, is designed to introduce students to a wide-range of popular and practical statistical techniques. Requiring a minimum of advanced mathematics, it is suitable for undergraduates in statistics, or graduate students in the physical, life, and social sciences. By providing an overview of statistical reasoning, this text equips readers with the insight needed to summarize data, recognize good experimental designs, implement appropriate analyses, and arrive at sound interpretations of statistical results. Includes extensive case studies and exercises drawn from a variety of disciplines Provides practice problems for each chapter with complete solutions Offers new and updated data sets available online Includes recommended data analysis projects with accompanying data sets
Statistical Methods Copyright Contents Preface Guiding Principles New to this Edition Using this Book Organization Coverage Sequencing Data Sets Computing Acknowledgments 1 Data and Statistics 1.1 Introduction 1.1.1 Data Sources 1.1.2 Using the Computer 1.2 Observations and Variables 1.3 Types of Measurements for Variables 1.4 Distributions 1.4.1 Graphical Representation of Distributions 1.5 Numerical Descriptive Statistics 1.5.1 Location 1.5.2 Dispersion Usefulness of the Mean and Standard Deviation 1.5.3 Other Measures 1.5.4 Computing the Mean and Standard Deviation from a Frequency Distribution 1.5.5 Change of Scale 1.6 Exploratory Data Analysis 1.6.1 The Stem and Leaf Plot 1.6.2 The Box Plot 1.6.3 Examples of Exploratory Data Analysis 1.7 Bivariate Data 1.7.1 Categorical Variables 1.7.2 Categorical and Interval Variables 1.7.3 Interval Variables 1.8 Populations, Samples, and Statistical Inference — A Preview 1.9 Data Collection 1.10 Chapter Summary Summary 1.11 Chapter Exercises Concept Questions Practice Exercises Exercises Projects 2 Probability and Sampling Distributions 2.1 Introduction 2.1.1 Chapter Preview 2.2 Probability 2.2.1 Definitions and Concepts Rules for Probabilities Involving More Than One Event 2.2.2 System Reliability 2.2.3 Random Variables 2.3 Discrete Probability Distributions 2.3.1 Properties of Discrete Probability Distributions 2.3.2 Descriptive Measures for Probability Distributions 2.3.3 The Discrete Uniform Distribution 2.3.4 The Binomial Distribution Derivation of the Binomial Probability Distribution Function 2.3.5 The Poisson Distribution 2.4 Continuous Probability Distributions 2.4.1 Characteristics of a Continuous Probability Distribution 2.4.2 The Continuous Uniform Distribution 2.4.3 The Normal Distribution 2.4.4 Calculating Probabilities Using the Table of the Normal Distribution 2.5 Sampling Distributions 2.5.1 Sampling Distribution of the Mean 2.5.2 Usefulness of the Sampling Distribution 2.5.3 Sampling Distribution of a Proportion 2.6 Other Sampling Distributions 2.6.1 The χ2 Distribution 2.6.2 Distribution of the Sample Variance 2.6.3 The t Distribution 2.6.4 Using the t Distribution 2.6.5 The F Distribution 2.6.6 Using the F Distribution 2.6.7 Relationships among the Distributions 2.7 Chapter Summary 2.8 Chapter Exercises Concept Questions Practice Exercises Exercises 3 Principles of Inference 3.1 Introduction 3.2 Hypothesis Testing 3.2.1 General Considerations 3.2.2 The Hypotheses 3.2.3 Rules for Making Decisions 3.2.4 Possible Errors in Hypothesis Testing 3.2.5 Probabilities of Making Errors Calculating α for Example 3.2 Calculating α for Example 3.3 Calculating β for Example 3.2 Calculating β for Example 3.3 3.2.6 Choosing between α and β 3.2.7 Five-Step Procedure for Hypothesis Testing 3.2.8 Why Do We Focus on the Type I Error? 3.2.9 Choosing α 3.2.10 The Five Steps for Example 3.3 3.2.11 p Values 3.2.12 The Probability of a Type II Error 3.2.13 Power 3.2.14 Uniformly Most Powerful Tests 3.2.15 One-Tailed Hypothesis Tests Solution to Example 3.1 NAEP Reading Scores 3.3 Estimation 3.3.1 Interpreting the Confidence Coefficient 3.3.2 Relationship between Hypothesis Testing and Confidence Intervals 3.4 Sample Size 3.5 Assumptions 3.5.1 Statistical Significance versus Practical Significance 3.6 Chapter Summary 3.7 Chapter Exercises Concept Questions Practice Exercises Multiple Choice Questions Exercises 4 Inferences on a Single Population 4.1 Introduction 4.2 Inferences on the Population Mean 4.2.1 Hypothesis Test on μ 4.2.2 Estimation of μ WARNING!!! DUMMY ENTRY Solution to Example 4.1 Perceptions of Area 4.2.3 Sample Size 4.2.4 Degrees of Freedom 4.3 Inferences on a Proportion for Large Samples 4.3.1 Hypothesis Test on p 4.3.2 Estimation of p An Alternate Approximation for the Confidence Interval 4.3.3 Sample Size 4.4 Inferences on the Variance of One Population 4.4.1 Hypothesis Test on σ2 4.4.2 Estimation of σ2 4.5 Assumptions 4.5.1 Required Assumptions and Sources of Violations 4.5.2 Detection of Violations 4.5.3 Tests for Normality 4.5.4 If Assumptions Fail 4.5.5 Alternate Methodology 4.6 Chapter Summary 4.7 Chapter Exercises Concept Questions Practice Exercises Exercises Projects 5 Inferences for Two Populations 5.1 Introduction WARNING!!! DUMMY ENTRY Independent Samples Dependent Samples Comparing the Two Sampling Procedures 5.2 Inferences on the Difference between Means Using Independent Samples 5.2.1 Sampling Distribution of a Linear Function of Random Variables 5.2.2 The Sampling Distribution of the Difference between Two Means 5.2.3 Variances Known Hypothesis Testing 5.2.4 Variances Unknown but Assumed Equal 5.2.5 The Pooled Variance Estimate 5.2.6 The “Pooled” t Test 5.2.7 Variances Unknown but Not Equal 5.2.8 Choosing between the Pooled and Unequal Variance t Tests 5.3 Inferences on Variances WARNING!!! DUMMY ENTRY WARNING!!! DUMMY ENTRY WARNING!!! DUMMY ENTRY Count Five Rule 5.4 Inferences on Means for Dependent Samples 5.5 Inferences on Proportions for Large Samples 5.5.1 Comparing Proportions Using Independent Samples An Alternate Approximation for the Confidence Interval 5.5.2 Comparing Proportions Using Paired Samples 5.6 Assumptions and Remedial Methods 5.7 Chapter Summary Solution to Example 5.1: PE Ratios Revisited Independent Samples Dependent samples 5.8 Chapter Exercises Concept Questions Practice Exercises Exercises Projects 6 Inferences for Two or More Means 6.1 Introduction 6.1.1 Using Statistical Software 6.2 The Analysis of Variance 6.2.1 Notation and Definitions 6.2.2 Heuristic Justification for the Analysis of Variance 6.2.3 Computational Formulas and the Partitioning of Sums of Squares 6.2.4 The Sum of Squares between Means 6.2.5 The Sum of Squares within Groups 6.2.6 The Ratio of Variances 6.2.7 Partitioning of the Sums of Squares 6.3 The Linear Model 6.3.1 The Linear Model for a Single Population 6.3.2 The Linear Model for Several Populations 6.3.3 The Analysis of Variance Model 6.3.4 Fixed and Random Effects Model 6.3.5 The Hypotheses 6.3.6 Expected Mean Squares 6.4 Assumptions 6.4.1 Assumptions and Detection of Violations 6.4.2 Formal Tests for the Assumption of Equal Variance Bartlett’s Test Levene Test and the Brown-Forsythe Test 6.4.3 Remedial Measures 6.5 Specific Comparisons 6.5.1 Contrasts 6.5.2 Constructing a t Statistic for a Contrast 6.5.3 Planned Contrasts with No Pattern—Bonferroni’s Method 6.5.4 Planned Comparisons versus Control—Dunnett’s Method 6.5.5 Planned All Possible Pairwise Comparisons—Fisher’s LSD and Tukey’s HSD Fisher’s LSD Tukey’s HSD 6.5.6 Planned Orthogonal Contrasts 6.5.7 Unplanned Contrasts—Scheffé’s Method 6.5.8 Comments 6.6 Random Models 6.7 Analysis of Means 6.7.1 ANOM for Proportions 6.7.2 ANOM for Count Data 6.8 Chapter Summary 6.9 Chapter Exercises Concept Questions Practice Exercises Exercises Projects 7 Linear Regression 7.1 Introduction 7.2 The Regression Model 7.3 Estimation of Parameters β0 and β1 7.3.1 A Note on Least Squares 7.4 Estimation of σ2 and the Partitioning of Sums of Squares 7.5 Inferences for Regression 7.5.1 The Analysis of Variance Test for β1 7.5.2 The (Equivalent) t Test for β1 7.5.3 Confidence Interval for β1 7.5.4 Inferences on the Response Variable 7.6 Using Statistical Software 7.7 Correlation 7.8 Regression Diagnostics 7.9 Chapter Summary 7.10 Chapter Exercises Concept Questions Practice Exercises Exercises Projects 8 Multiple Regression 8.1 The Multiple Regression Model 8.1.1 The Partial Regression Coefficient 8.2 Estimation of Coefficients 8.2.1 Simple Linear Regression with Matrices 8.2.2 Estimating the Parameters of a Multiple Regression Model 8.2.3 Correcting for the Mean, an Alternative Calculating Method 8.3 Inferential Procedures 8.3.1 Estimation of σ2 and the Partitioning of the Sums of Squares 8.3.2 The Coefficient of Variation 8.3.3 Inferences for Coefficients General Principle for Hypothesis Testing 8.3.4 Tests Normally Provided by Statistical Software The Test for the Model Tests for Individual Coefficients 8.3.5 The Equivalent t Statistic for Individual Coefficients 8.3.6 Inferences on the Response Variable 8.4 Correlations 8.4.1 Multiple Correlation 8.4.2 How Useful is the R2 Statistic? 8.4.3 Partial Correlation 8.5 Using Statistical Software 8.6 Special Models 8.6.1 The Polynomial Model 8.6.2 The Multiplicative Model 8.6.3 Nonlinear Models 8.7 Multicollinearity 8.7.1 Redefining Variables 8.7.2 Other Methods 8.8 Variable Selection 8.8.1 Other Selection Procedures 8.9 Detection of Outliers, Row Diagnostics WARNING!!! DUMMY ENTRY A Physical Analogue to Least Squares 8.10 Chapter Summary 8.11 Chapter Exercises Concept Questions Practice Exercises Exercises Projects 9 Factorial Experiments 9.1 Introduction 9.2 Concepts and Definitions 9.3 The Two-Factor Factorial Experiment 9.3.1 The Linear Model 9.3.2 Notation 9.3.3 Computations for the Analysis of Variance 9.3.4 Between-Cells Analysis 9.3.5 The Factorial Analysis 9.3.6 Expected Mean Squares 9.3.7 Unbalanced Data 9.4 Specific Comparisons 9.4.1 Preplanned Contrasts 9.4.2 Basic Test Statistic for Contrasts Special Computing Technique for Orthogonal Contrasts 9.4.3 Multiple Comparisons When Only Main Effects Are Important When Interactions Are Important 9.5 Quantitative Factors 9.5.1 Lack of Fit 9.6 No Replications 9.7 Three or More Factors 9.7.1 Additional Considerations 9.8 Chapter Summary 9.9 Chapter Exercises Concept Questions Practice Exercises Exercises Project 10 Design of Experiments 10.1 Introduction 10.2 The Randomized Block Design 10.2.1 The Linear Model 10.2.2 Relative Efficiency 10.2.3 Random Treatment Effects in the Randomized Block Design 10.3 Randomized Blocks with Sampling 10.4 Other Designs 10.4.1 Factorial Experiments in a Randomized Block Design Stage One Stage Two Final Stage 10.4.2 Nested Designs 10.5 Repeated Measures Designs 10.5.1 One Between-Subject and One Within-Subject Factor 10.5.2 Two Within-Subject Factors 10.5.3 Assumptions of the Repeated Measures Model 10.5.4 Split Plot Designs 10.5.5 Additional Topics 10.6 Chapter Summary 10.7 Chapter Exercises Concept Questions Practice Exercises Exercises Projects 11 Other Linear Models 11.1 Introduction 11.2 The Dummy Variable Model 11.2.1 Factor Effects Coding 11.2.2 Reference Cell Coding 11.2.3 Comparing Coding Schemes 11.3 Unbalanced Data 11.4 Statistical Software’s Implementation of the Dummy Variable Model 11.5 Models with Dummy and Interval Variables 11.5.1 Analysis of Covariance 11.5.2 Multiple Covariates 11.5.3 Unequal Slopes 11.5.4 Independence of Covariates and Factors 11.6 Extensions to Other Models 11.7 Estimating Linear Combinations of Regression Parameters 11.7.1 Covariance Matrices 11.7.2 Linear Combination of Regression Parameters 11.8 Weighted Least Squares 11.9 Correlated Errors 11.10 Chapter Summary 11.11 Chapter Exercises Concept Questions Practice Exercises Exercises Projects 12 Categorical Data 12.1 Introduction 12.2 Hypothesis Tests for a Multinomial Population 12.3 Goodness of Fit Using the χ2 Test 12.3.1 Test for a Discrete Distribution 12.3.2 Test for a Continuous Distribution 12.4 Contingency Tables 12.4.1 Computing the Test Statistic 12.4.2 Test for Homogeneity 12.4.3 Test for Independence 12.4.4 Measures of Dependence 12.4.5 Likelihood Ratio Test 12.4.6 Fisher’s Exact Test 12.5 Specific Comparisons in Contingency Tables 12.6 Chapter Summary 12.7 Chapter Exercises Concept Questions Practice Exercises Exercises Projects 13 Special Types of Regression 13.1 Introduction 13.1.1 Maximum Likelihood and Least Squares 13.2 Logistic Regression 13.3 Poisson Regression 13.3.1 Choosing Between Logistic and Poisson Regression 13.4 Nonlinear Least-Squares Regression 13.4.1 Sigmoidal Shapes (S Curves) 13.4.2 Symmetric Unimodal Shapes 13.5 Chapter Summary 13.6 Chapter Exercises Concept Questions Practice Exercises Exercises Projects 14 Nonparametric Methods 14.1 Introduction 14.1.1 Ranks 14.1.2 Randomization Tests 14.1.3 Comparing Parametric and Nonparametric Procedures 14.2 One Sample WARNING!!! DUMMY ENTRY The Randomization Approach for Example 14.3 14.3 Two Independent Samples WARNING!!! DUMMY ENTRY Randomization Approach to Example 14.4 14.4 More Than Two Samples WARNING!!! DUMMY ENTRY Randomization Approach to Example 14.5 14.5 Randomized Block Design 14.6 Rank Correlation 14.7 The Bootstrap 14.8 Chapter Summary 14.9 Chapter Exercises Concept Questions Practice Exercises Exercises Projects Appendix A Tables of Distributions Appendix B Appendix B A Brief Introduction to Matrices B.1 Matrix Algebra B.2 Solving Linear Equations Appendix C Descriptions of Data Sets C.1 Florida Lake Data C.2 State Education Data C.3 National Atmospheric Deposition Program (NADP) Data C.4 Florida County Data C.5 Cowpea Data C.6 Jax House Prices Data C.7 Gainesville, FL, Weather Data C.8 General Social Survey (GSS) 2016 Data Hints for Selected Exercises Chapter 1 Practice Exercises Exercises Chapter 2 Practice Exercises Exercises Chapter 3 Practice Exercises Exercises Chapter 4 Practice Exercises Exercises Chapter 5 Practice Exercises Exercises Chapter 6 Practice Exercises Exercises Chapter 7 Practice Exercises Exercises Chapter 8 Practice Exercises Exercises Chapter 9 Practice Exercises Exercises Chapter 10 Practice Exercises Exercises Chapter 11 Practice Exercises Exercises Chapter 12 Practice Exercises Exercises Chapter 13 Practice Exercises Exercises Chapter 14 Practice Exercises Exercises References Index