دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1st ed. 2019 نویسندگان: A. J. Berlinsky, A. B. Harris سری: Graduate Texts in Physics ISBN (شابک) : 3030281868, 9783030281861 ناشر: Springer سال نشر: 2019 تعداد صفحات: 609 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 4 مگابایت
در صورت تبدیل فایل کتاب Statistical Mechanics: An Introductory Graduate Course (Graduate Texts in Physics) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مکانیک آماری: دوره مقدماتی تحصیلات تکمیلی (متن های تحصیلات تکمیلی در فیزیک) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
در یک بررسی جامع از مکانیک آماری از ترمودینامیک تا گروه نرمالسازی مجدد، این کتاب به عنوان متن اصلی برای یک دوره فارغالتحصیلی تمامسال در مکانیک آماری در مقطع کارشناسی ارشد یا دکترا عمل میکند. مرحله. هر فصل شامل تمرین های متعدد است و چندین فصل به موضوعات خاصی می پردازد که می تواند به عنوان پایه ای برای پروژه های دانشجویی مورد استفاده قرار گیرد.
مفهوم مقیاس بندی در اوایل معرفی شده و به طور گسترده در متن استفاده می شود. در قلب این کتاب، بررسی گستردهای از نظریه میدان میانگین، از سادهترین رویکرد جداسازی، از طریق فرمالیسم ماتریس چگالی، تا تئوری میدان کلاسیک و کوانتومی خودسازگار و همچنین راهحلهای دقیق در درخت کیلی وجود دارد. فراتر از تئوری میدان میانگین، این کتاب نگاشت دقیق شامل مدلهای پاتس، نفوذ، پیادهرویهای خود اجتنابی و تصادفی خاموش، و اتصال مدلهای مختلف حرارتی و حرارتی را مورد بحث قرار میدهد. روشهای محاسباتی مانند بسطهای سری و شبیهسازی مونت کارلو، همراه با راهحلهای دقیق برای مدلهای کوانتومی ۱ بعدی و دوبعدی کلاسیک Ising مورد بحث قرار گرفتهاند. فرمالیسم گروه عادی سازی مجدد توسعه یافته است، از RG فضای واقعی شروع می شود و از طریق درمان دقیق گسترش اپسیلون ویلسون ادامه می یابد. در نهایت، موضوع سیستمهای کوسترلیتز-تولس از منظر تاریخی معرفی شده و سپس با روشهایی به دلیل اندرسون، کوسترلیتز، تولس و یانگ مورد بررسی قرار میگیرد.
در مجموع، این متن جامع، بهروز و جذاب است. یک بسته ایده آل برای دوره های پیشرفته کارشناسی یا کارشناسی ارشد یا برای استفاده در مطالعه شخصی ارائه می دهد.
In a comprehensive treatment of Statistical Mechanics from thermodynamics through the renormalization group, this book serves as the core text for a full-year graduate course in statistical mechanics at either the Masters or Ph.D. level. Each chapter contains numerous exercises, and several chapters treat special topics which can be used as the basis for student projects.
The concept of scaling is introduced early and used extensively throughout the text. At the heart of the book is an extensive treatment of mean field theory, from the simplest decoupling approach, through the density matrix formalism, to self-consistent classical and quantum field theory as well as exact solutions on the Cayley tree. Proceeding beyond mean field theory, the book discusses exact mappings involving Potts models, percolation, self-avoiding walks and quenched randomness, connecting various athermal and thermal models. Computational methods such as series expansions and Monte Carlo simulations are discussed, along with exact solutions to the 1D quantum and 2D classical Ising models. The renormalization group formalism is developed, starting from real-space RG and proceeding through a detailed treatment of Wilson’s epsilon expansion. Finally the subject of Kosterlitz-Thouless systems is introduced from a historical perspective and then treated by methods due to Anderson, Kosterlitz, Thouless and Young.
Altogether, this comprehensive, up-to-date, and engaging text offers an ideal package for advanced undergraduate or graduate courses or for use in self study.
Preface Contents About the Authors Part I Preliminaries 1 Introduction 1.1 The Role of Statistical Mechanics 1.2 Examples of Interacting Many-Body Systems 1.2.1 Solid–Liquid–Gas 1.2.2 Electron Liquid 1.2.3 Classical Spins 1.2.4 Superfluids 1.2.5 Superconductors 1.2.6 Quantum Spins 1.2.7 Liquid Crystals, Polymers, Copolymers 1.2.8 Quenched Randomness 1.2.9 Cosmology and Astrophysics 1.3 Challenges 1.4 Some Key References 2 Phase Diagrams 2.1 Examples of Phase Diagrams 2.1.1 Solid–Liquid–Gas 2.1.2 Ferromagnets 2.1.3 Antiferromagnets 2.1.4 3He–4He Mixtures 2.1.5 Pure 3He 2.1.6 Percolation 2.2 Conclusions 2.3 Exercises References 3 Thermodynamic Properties and Relations 3.1 Preamble 3.2 Laws of Thermodynamics 3.3 Thermodynamic Variables 3.4 Thermodynamic Potential Functions 3.5 Thermodynamic Relations 3.5.1 Response Functions 3.5.2 Mathematical Relations 3.5.3 Applications 3.5.4 Consequences of the Third Law 3.6 Thermodynamic Stability 3.6.1 Internal Energy as a Thermodynamic Potential 3.6.2 Stability of a Homogeneous System 3.6.3 Extremal Properties of the Free Energy 3.7 Legendre Transformations 3.8 N as a Thermodynamic Variable 3.8.1 Two-Phase Coexistence and P/T Along the Melting Curve 3.8.2 Physical Interpretation of the Chemical Potential 3.8.3 General Structure of Phase Transitions 3.9 Multicomponent Systems 3.9.1 Gibbs–Duhem Relation 3.9.2 Gibbs Phase Rule 3.10 Exercises References Part II Basic Formalism 4 Basic Principles 4.1 Introduction 4.2 Density Matrix for a System with Fixed Energy 4.2.1 Macroscopic Argument 4.2.2 Microscopic Argument 4.2.3 Density of States of a Monatomic Ideal Gas 4.3 System in Contact with an Energy Reservoir 4.3.1 Two Subsystems in Thermal Contact 4.3.2 System in Contact with a Thermal Reservoir 4.4 Thermodynamic Functions for the Canonical Distribution 4.4.1 The Entropy 4.4.2 The Internal Energy and the Helmholtz Free Energy 4.5 Classical Systems 4.5.1 Classical Density Matrix 4.5.2 Gibbs Entropy Paradox 4.5.3 Irrelevance of Classical Kinetic Energy 4.6 Summary 4.7 Exercises 4.8 Appendix Indistinguishability References 5 Examples 5.1 Noninteracting Subsystems 5.2 Equipartition Theorem 5.3 Two-Level System 5.4 Specific Heat—Finite-Level Scheme 5.5 Harmonic Oscillator 5.5.1 The Classical Oscillator 5.5.2 The Quantum Oscillator 5.5.3 Asymptotic Limits 5.6 Free Rotator 5.6.1 Classical Rotator 5.6.2 Quantum Rotator 5.7 Grüneisen Law 5.8 Summary 5.9 Exercises 6 Basic Principles (Continued) 6.1 Grand Canonical Partition Function 6.2 The Fixed Pressure Partition Function 6.3 Grand and Fixed Pressure Partition Functions for a Classical Ideal Gas 6.3.1 Grand Partition Function of a Classical Ideal Gas 6.3.2 Constant Pressure Partition Function of a Classical Ideal Gas 6.4 Overview of Various Partition Functions 6.5 Product Rule 6.6 Variational Principles 6.6.1 Entropy Functional 6.6.2 Free Energy Functional 6.7 Thermal Averages as Derivatives of the Free Energy 6.7.1 Order Parameters 6.7.2 Susceptibilities of Classical Systems 6.7.3 Correlation Functions 6.8 Summary 6.9 Exercises 7 Noninteracting Gases 7.1 Preliminaries 7.2 The Noninteracting Fermi Gas 7.2.1 High Temperature 7.2.2 Low Temperature 7.2.3 Spin Susceptibility at Low Temperature 7.2.4 White Dwarfs 7.3 The Noninteracting Bose Gas 7.3.1 High Temperature 7.3.2 Low Temperature 7.4 Bose–Einstein Condensation, Superfluidity, and Liquid 4He 7.5 Sound Waves (Phonons) 7.6 Summary 7.7 Exercises References Part III Mean Field Theory, Landau Theory 8 Mean-Field Approximation for the Free Energy 8.1 Introduction 8.2 Ferromagnetic Ising Model 8.2.1 Graphical Analysis of Self-consistency 8.2.2 High Temperature 8.2.3 Just Below the Ordering Temperature for H=0 8.2.4 At the Critical Temperature 8.2.5 Heat Capacity in Mean-Field Theory 8.3 Scaling Analysis of Mean-Field Theory 8.4 Further Applications of Mean-Field Theory 8.4.1 Arbitrary Bilinear Hamiltonian 8.4.2 Vector Spins 8.4.3 Liquid Crystals 8.5 Summary and Discussion 8.6 Exercises References 9 Density Matrix Mean-Field Theory and Landau Expansions 9.1 The General Approach 9.2 Order Parameters 9.3 Example: The Ising Ferromagnet 9.3.1 Landau Expansion for the Ising Model for h=0 9.4 Classical Systems: Liquid Crystals 9.4.1 Analysis of the Landau Expansion for Liquid Crystals 9.5 General Expansions for a Single-Order Parameter 9.5.1 Case 1: Disordered Phase at Small Field 9.5.2 Case 2: Even-Order Terms with Positive Coefficients 9.5.3 Case 3: f Has a Nonzero σ3 Term 9.5.4 Case 4: Only Even Terms in f, But the Coefficient of σ4 is Negative 9.5.5 Case 5: Only Even Terms in f, But the Coefficient of σ4 is Zero 9.6 Phase Transitions and Mean-Field Theory 9.6.1 Phenomenology of First-Order Transitions 9.6.2 Limitations of Mean-Field Theory 9.7 Summary 9.8 Exercises 10 Landau Theory for Two or More Order Parameters 10.1 Introduction 10.2 Coupling of Two Variables at Quadratic Order 10.2.1 General Remarks 10.2.2 The Ising Antiferromagnet 10.2.3 Landau Expansion for the Antiferromagnet 10.3 Landau Theory and Lattice Fourier Transforms 10.3.1 The First Brillouin Zone 10.4 Wavevector Selection for Ferro- and Antiferromagnetism 10.5 Cubic Coupling 10.6 Vector Order Parameters 10.7 Potts Models 10.8 The Lattice Gas: An Ising-Like System 10.8.1 Disordered Phase of the Lattice Gas 10.8.2 Lithium Intercalation Batteries 10.9 Ordered Phase of the Lattice Gas 10.9.1 Example: The Hexagonal Lattice with Repulsive Nearest Neighbor Interactions 10.9.2 The Hexagonal Brillouin Zone 10.10 Landau Theory of Multiferroics 10.10.1 Incommensurate Order 10.10.2 NVO—a multiferroic material 10.10.3 Symmetry Analysis 10.11 Summary 10.12 Exercises References 11 Quantum Fluids 11.1 Introduction 11.2 The Interacting Fermi Gas 11.3 Fermi Liquid Theory 11.4 Spin-Zero Bose Gas with Short-Range Interactions 11.5 The Bose Superfluid 11.5.1 Diagonalizing the Effective Hamiltonian 11.5.2 Minimizing the Free Energy 11.5.3 Discussion 11.5.4 Approximate Solution 11.5.5 Comments on This Theory 11.6 Superfluid Flow 11.7 Summary 11.8 Exercises 11.9 Appendix—The Pseudopotential References 12 Superconductivity: Hartree–Fock for Fermions with Attractive Interactions 12.1 Introduction 12.2 Fermion Pairing 12.3 Nature of the Attractive Interaction 12.4 Mean-Field Theory for Superconductivity 12.5 Minimizing the Free Energy 12.6 Solution to Self-consistent Equations 12.6.1 The Energy Gap at T=0 12.6.2 Solution for the Transition Temperature 12.7 Free Energy of a BCS Superconductor 12.8 Anderson Spin Model 12.9 Suggestions for Further Reading 12.10 Summary 12.11 Exercises References 13 Qualitative Discussion of Fluctuations 13.1 Spatial Correlations Within Mean-Field Theory 13.2 Scaling 13.2.1 Exponents and Scaling 13.2.2 Relations Between Exponents 13.2.3 Scaling in Temperature and Field 13.3 Kadanoff Length Scaling 13.4 The Ginzburg Criterion 13.5 The Gaussian Model 13.6 Hubbard–Stratonovich Transformation 13.7 Summary 13.8 Exercises 13.9 Appendix—Scaling of Gaussian Variables References 14 The Cayley Tree 14.1 Introduction 14.2 Exact Solution for the Ising Model 14.3 Exact Solution for the Percolation Model 14.3.1 Susceptibility in the Disordered Phase 14.3.2 Percolation Probability 14.4 Exact Solution for the Spin Glass 14.5 General Development of the Tree Approximation 14.5.1 General Formulation 14.5.2 Ising Model 14.5.3 Hard-Core Dimers 14.5.4 Discussion 14.6 Questions 14.7 Summary 14.8 Exercises References Part IV Beyond Mean-Field Theory 15 Exact Mappings 15.1 q-State Potts Model 15.1.1 Percolation and the q rightarrow1 Limit 15.1.2 Critical Properties of Percolation 15.2 Self-avoiding Walks and the n-Vector Model 15.2.1 Phenomenology of SAWs 15.2.2 Mapping 15.2.3 Flory's Estimate 15.3 Quenched Randomness 15.3.1 Mapping onto the n-Replica Hamiltonian 15.3.2 The Harris Criterion 15.4 Summary 15.5 Exercises References 16 Series Expansions 16.1 Introduction 16.2 Cumulant Expansion 16.2.1 Summary 16.3 Nonideal Gas 16.3.1 Higher Order Terms 16.3.2 Van der Waals Equation of State 16.4 High-Temperature Expansions 16.4.1 Inverse Susceptibility 16.5 Enumeration of Diagrams 16.5.1 Illustrative Construction of Series 16.6 Analysis of Series 16.7 Summary 16.8 Exercises 16.9 Appendix: Analysis of Nonideal Gas Series References 17 The Ising Model: Exact Solutions 17.1 The One-Dimensional Ising Model 17.1.1 Transfer Matrix Solution 17.1.2 Correlation Functions 17.2 Ising Model in a Transverse Field 17.2.1 Mean-Field Theory (T=0) 17.2.2 Duality 17.2.3 Exact Diagonalization 17.2.4 Finite Temperature and Order Parameters 17.2.5 Correlation Functions 17.3 The Two-Dimensional Ising Model 17.3.1 Exact Solution via the Transfer Matrix 17.4 Duality 17.4.1 The Dual Lattice 17.4.2 2D Ising Model 17.4.3 2D q-State Potts Model 17.4.4 Duality in Higher Dimensions 17.5 Summary 17.6 Exercises References 18 Monte Carlo 18.1 Motivation 18.2 The Method: How and Why It Works 18.3 Example: The Ising Ferromagnet on a Square Lattice 18.4 The Histogram Method 18.5 Correlation Functions 18.6 Finite-Size Scaling for the Correlation Function 18.7 Finite-Size Scaling for the Magnetization 18.8 Summary 18.9 Exercises References 19 Real Space Renormalization Group 19.1 One-Dimensional Ising Model 19.2 Two-Dimensional Ising Model 19.3 Formal Theory 19.4 Finite Cluster RG 19.4.1 Formalism 19.4.2 Application to the 2D Square Lattice 19.5 Summary 19.6 Exercises References 20 The Epsilon Expansion 20.1 Introduction 20.2 Role of Spatial Dimension, d 20.3 Qualitative Description of the RG ε-Expansion 20.3.1 Gaussian Variables 20.3.2 Qualitative Description of the RG 20.3.3 Gaussian Model 20.3.4 Scaling of Higher Order Couplings 20.4 RG Calculations for the φ4 Model 20.4.1 Preliminaries 20.4.2 First Order in u 20.4.3 Second Order in u 20.4.4 Calculation of η 20.4.5 Generalization to the n-Component Model and Higher Order in ε Terms 20.5 Universality Classes 20.6 Summary 20.7 Exercises 20.8 Appendix: Wick's Theorem References 21 Kosterlitz-Thouless Physics 21.1 Introduction 21.2 Phonons in Crystal Lattices 21.3 2D Harmonic Crystals 21.4 Disordering by Topological Defects 21.5 Related Problems 21.6 The 2D XY Model 21.6.1 The Villain Approximation 21.6.2 Duality Transformation 21.6.3 Generalized Villain Model 21.6.4 Spin Waves and Vortices 21.6.5 The K-T Transition 21.6.6 Disconituity of the Order Parameter at Tc 21.6.7 Correlation Length 21.6.8 Free Energy and Specific Heat 21.7 Conclusion 21.8 Exercises References Index