دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Pierre Moulin, Venugopal V. Veeravalli سری: ISBN (شابک) : 9781107185920, 1107185920 ناشر: Cambridge University Press سال نشر: 2019 تعداد صفحات: 421 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 26 مگابایت
در صورت تبدیل فایل کتاب Statistical Inference for Engineers and Data Scientists به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب استنباط آماری برای مهندسان و دانشمندان داده نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب یک مقدمه ریاضی در دسترس و به روز برای ابزارهای مورد نیاز برای پرداختن به مشکلات استنتاج مدرن در مهندسی و علوم داده است، ایده آل برای دانشجویان فارغ التحصیل دروس استنتاج آماری و تشخیص و تخمین، و مرجعی ارزشمند برای محققان و متخصصان. . این کتاب درسی با انبوهی از تصاویر و مثالها برای توضیح ویژگیهای کلیدی تئوری و ارتباط با برنامههای کاربردی دنیای واقعی، مطالب اضافی برای کشف مفاهیم پیشرفتهتر و مشکلات متعدد انتهای فصل برای آزمایش دانش خواننده، راهنمای "رفتن به" برای یادگیری در مورد اصول اصلی استنتاج آماری و کاربرد آن در مهندسی و علوم داده. راهنمای راه حل های محافظت شده با رمز عبور و گالری تصاویر کتاب به صورت آنلاین در دسترس هستند.
This book is a mathematically accessible and up-to-date introduction to the tools needed to address modern inference problems in engineering and data science, ideal for graduate students taking courses on statistical inference and detection and estimation, and an invaluable reference for researchers and professionals. With a wealth of illustrations and examples to explain the key features of the theory and to connect with real-world applications, additional material to explore more advanced concepts, and numerous end-of-chapter problems to test the reader's knowledge, this textbook is the 'go-to' guide for learning about the core principles of statistical inference and its application in engineering and data science. The password-protected solutions manual and the image gallery from the book are available online.
Contents Preface List of Acronyms 1 Introduction 1.1 Background 1.2 Notation 1.2.1 Probability Distributions 1.2.2 Conditional Probability Distributions 1.2.3 Expectations and Conditional Expectations 1.2.4 Unified Notation 1.2.5 General Random Variables 1.3 Statistical Inference 1.3.1 Statistical Model 1.3.2 Some Generic Estimation Problems 1.3.3 Some Generic Detection Problems 1.4 Performance Analysis 1.5 Statistical Decision Theory 1.5.1 Conditional Risk and Optimal Decision Rules 1.5.2 Bayesian Approach 1.5.3 Minimax Approach 1.5.4 Other Non-Bayesian Rules 1.6 Derivation of Bayes Rule 1.7 Link Between Minimax and Bayesian Decision Theory 1.7.1 Dual Concept 1.7.2 Game Theory 1.7.3 Saddlepoint 1.7.4 Randomized Decision Rules Exercises References Part I Hypothesis Testing 2 Binary Hypothesis Testing 2.1 General Framework 2.2 Bayesian Binary Hypothesis Testing 2.2.1 Likelihood Ratio Test 2.2.2 Uniform Costs 2.2.3 Examples 2.3 Binary Minimax Hypothesis Testing 2.3.1 Equalizer Rules 2.3.2 Bayes Risk Line and Minimum Risk Curve 2.3.3 Differentiable V (π0) 2.3.4 Nondifferentiable V (π0) 2.3.5 Randomized LRTs 2.3.6 Examples 2.4 Neyman–Pearson Hypothesis Testing 2.4.1 Solution to the NP Optimization Problem 2.4.2 NP Rule 2.4.3 Receiver Operating Characteristic 2.4.4 Examples 2.4.5 Convex Optimization Exercises 3 Multiple Hypothesis Testing 3.1 General Framework 3.2 Bayesian Hypothesis Testing 3.2.1 Optimal Decision Regions 3.2.2 Gaussian Ternary Hypothesis Testing 3.3 Minimax Hypothesis Testing 3.4 Generalized Neyman–Pearson Detection 3.5 Multiple Binary Tests 3.5.1 Bonferroni Correction 3.5.2 False Discovery Rate 3.5.3 Benjamini–Hochberg Procedure 3.5.4 Connection to Bayesian Decision Theory Exercises References 4 Composite Hypothesis Testing 4.1 Introduction 4.2 Random Parameter ± 4.2.1 Uniform Costs Over Each Hypothesis 4.2.2 Nonuniform Costs Over Hypotheses 4.3 Uniformly Most Powerful Test 4.3.1 Examples 4.3.2 Monotone Likelihood Ratio Theorem 4.3.3 Both Composite Hypotheses 4.4 Locally Most Powerful Test 4.5 Generalized Likelihood Ratio Test 4.5.1 GLRT for Gaussian Hypothesis Testing 4.5.2 GLRT for Cauchy Hypothesis Testing 4.6 Random versus Nonrandom θ 4.7 Non-Dominated Tests 4.8 Composite m-ary Hypothesis Testing 4.8.1 Random Parameter ± 4.8.2 Non-Dominated Tests 4.8.3 m-GLRT 4.9 Robust Hypothesis Testing 4.9.1 Robust Detection with Conditionally Independent Observations 4.9.2 Epsilon-Contamination Class Exercises References 5 Signal Detection 5.1 Introduction 5.2 Problem Formulation 5.3 Detection of Known Signal in Independent Noise 5.3.1 Signal in i.i.d. Gaussian Noise 5.3.2 Signal in i.i.d. Laplacian Noise 5.3.3 Signal in i.i.d. Cauchy Noise 5.3.4 Approximate NP Test 5.4 Detection of Known Signal in Correlated Gaussian Noise 5.4.1 Reduction to i.i.d. Noise Case 5.4.2 Performance Analysis 5.5 m-ary Signal Detection 5.5.1 Bayes Classification Rule 5.5.2 Performance Analysis 5.6 Signal Selection 5.6.1 i.i.d. Noise 5.6.2 Correlated Noise 5.7 Detection of Gaussian Signals in Gaussian Noise 5.7.1 Detection of a Gaussian Signal in White Gaussian Noise 5.7.2 Detection of i.i.d. Zero-Mean Gaussian Signal 5.7.3 Diagonalization of Signal Covariance 5.7.4 Performance Analysis 5.7.5 Gaussian Signals With Nonzero Mean 5.8 Detection of Weak Signals 5.9 Detection of Signal with Unknown Parameters in White Gaussian Noise 5.9.1 General Approach 5.9.2 Linear Gaussian Model 5.9.3 Nonlinear Gaussian Model 5.9.4 Discrete Parameter Set 5.10 Deflection-Based Detection of Non-Gaussian Signal in Gaussian Noise Exercises References 6 Convex Statistical Distances 6.1 Kullback–Leibler Divergence 6.2 Entropy and Mutual Information 6.3 Chernoff Divergence, Chernoff Information, and Bhattacharyya Distance 6.4 Ali–Silvey Distances 6.5 Some Useful Inequalities Exercises References 7 Performance Bounds for Hypothesis Testing 7.1 Simple Lower Bounds on Conditional Error Probabilities 7.2 Simple Lower Bounds on Error Probability 7.3 Chernoff Bound 7.3.1 Moment-Generating and Cumulant-Generating Functions 7.3.2 Chernoff Bound 7.4 Application of Chernoff Bound to Binary Hypothesis Testing 7.4.1 Exponential Upper Bounds on PF and PM 7.4.2 Bayesian Error Probability 7.4.3 Lower Bound on ROC 7.4.4 Example 7.5 Bounds on Classification Error Probability 7.5.1 Upper and Lower Bounds in Terms of Pairwise Error Probabilities 7.5.2 Bonferroni’s Inequalities 7.5.3 Generalized Fano’s Inequality 7.6 Appendix: Proof of Theorem 7.4 Exercises References 8 Large Deviations and Error Exponents for Hypothesis Testing 8.1 Introduction 8.2 Chernoff Bound for Sum of i.i.d. Random Variables 8.2.1 Cramér’s Theorem 8.2.2 Why is the Central Limit Theorem Inapplicable Here? 8.3 Hypothesis Testing with i.i.d. Observations 8.3.1 Bayesian Hypothesis Testing with i.i.d. Observations 8.3.2 Neyman–Pearson Hypothesis Testing with i.i.d. Observations 8.3.3 Hoeffding Problem 8.3.4 Example 8.4 Refined Large Deviations 8.4.1 The Method of Exponential Tilting 8.4.2 Sum of i.i.d. Random Variables 8.4.3 Lower Bounds on Large-Deviations Probabilities 8.4.4 Refined Asymptotics for Binary Hypothesis Testing 8.4.5 Non-i.i.d. Components 8.5 Appendix: Proof of Lemma 8.1 Exercises References 9 Sequential and Quickest Change Detection 9.1 Sequential Detection 9.1.1 Problem Formulation 9.1.2 Stopping Times and Decision Rules 9.1.3 Two Formulations of the Sequential Hypothesis Testing Problem 9.1.4 Sequential Probability Ratio Test 9.1.5 SPRT Performance Evaluation 9.2 Quickest Change Detection 9.2.1 Minimax Quickest Change Detection 9.2.2 Bayesian Quickest Change Detection Exercises References 10 Detection of Random Processes 10.1 Discrete-Time Random Processes 10.1.1 Periodic Stationary Gaussian Processes 10.1.2 Stationary Gaussian Processes 10.1.3 Markov Processes 10.2 Continuous-Time Processes 10.2.1 Covariance Kernel 10.2.2 Karhunen–Loève Transform 10.2.3 Detection of Known Signals in Gaussian Noise 10.2.4 Detection of Gaussian Signals in Gaussian Noise 10.3 Poisson Processes 10.4 General Processes 10.4.1 Likelihood Ratio 10.4.2 Ali–Silvey Distances 10.5 Appendix: Proof of Proposition 10.1 Exercises References Part II Estimation 11 Bayesian Parameter Estimation 11.1 Introduction 11.2 Bayesian Parameter Estimation 11.3 MMSE Estimation 11.4 MMAE Estimation 11.5 MAP Estimation 11.6 Parameter Estimation for Linear Gaussian Models 11.7 Estimation of Vector Parameters 11.7.1 Vector MMSE Estimation 11.7.2 Vector MMAE Estimation 11.7.3 Vector MAP Estimation 11.7.4 Linear MMSE Estimation 11.7.5 Vector Parameter Estimation in Linear Gaussian Models 11.7.6 Other Cost Functions for Bayesian Estimation 11.8 Exponential Families 11.8.1 Basic Properties 11.8.2 Conjugate Priors Exercises References 12 Minimum Variance Unbiased Estimation 12.1 Nonrandom Parameter Estimation 12.2 Sufficient Statistics 12.3 Factorization Theorem 12.4 Rao–Blackwell Theorem 12.5 Complete Families of Distributions 12.5.1 Link Between Completeness and Sufficiency 12.5.2 Link Between Completeness and MVUE 12.5.3 Link Between Completeness and Exponential Families 12.6 Discussion 12.7 Examples: Gaussian Families Exercises References 13 Information Inequality and Cramér–Rao Lower Bound 13.1 Fisher Information and the Information Inequality 13.2 Cramér–Rao Lower Bound 13.3 Properties of Fisher Information 13.4 Conditions for Equality in Information Inequality 13.5 Vector Parameters 13.6 Information Inequality for Random Parameters 13.7 Biased Estimators 13.8 Appendix: Derivation of (13.16) Exercises References 14 Maximum Likelihood Estimation 14.1 Introduction 14.2 Computation of ML Estimates 14.3 Invariance to Reparameterization 14.4 MLE in Exponential Families 14.4.1 Mean-Value Parameterization 14.4.2 Relation to MVUEs 14.4.3 Asymptotics 14.5 Estimation of Parameters on Boundary 14.6 Asymptotic Properties for General Families 14.6.1 Consistency 14.6.2 Asymptotic Efficiency and Normality 14.7 Nonregular ML Estimation Problems 14.8 Nonexistence of MLE 14.9 Non-i.i.d. Observations 14.10 M-Estimators and Least-Squares Estimators 14.11 Expectation-Maximization (EM) Algorithm 14.11.1 General Structure of the EM Algorithm 14.11.2 Convergence of EM Algorithm 14.11.3 Examples 14.12 Recursive Estimation 14.12.1 Recursive MLE 14.12.2 Recursive Approximations to Least-Squares Solution 14.13 Appendix: Proof of Theorem 14.2 14.14 Appendix: Proof of Theorem 14.4 Exercises References 15 Signal Estimation 15.1 Linear Innovations 15.2 Discrete-Time Kalman Filter 15.2.1 Time-Invariant Case 15.3 Extended Kalman Filter 15.4 Nonlinear Filtering for General Hidden Markov Models 15.5 Estimation in Finite Alphabet Hidden Markov Models 15.5.1 Viterbi Algorithm 15.5.2 Forward-Backward Algorithm 15.5.3 Baum–Welch Algorithm for HMM Learning Exercises References Appendix A Matrix Analysis Appendix B Random Vectors and Covariance Matrices Appendix C Probability Distributions Appendix D Convergence of Random Sequences Index