دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1st ed. نویسندگان: Mihaela Pop, Maxime Sermesant, Jichao Zhao, Shuo Li, Kristin McLeod, Alistair Young, Kawal Rhode, Tommaso Mansi سری: Lecture Notes in Computer Science 11395 ISBN (شابک) : 9783030120283, 9783030120290 ناشر: Springer International Publishing سال نشر: 2019 تعداد صفحات: 497 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 80 مگابایت
کلمات کلیدی مربوط به کتاب اطلسهای آماری و مدلهای محاسباتی قلب. چالش های تقسیم بندی دهلیزی و کمیت LV: نهمین کارگاه بین المللی ، STACOM 2018 ، همراه با MICCAI 2018 ، گرانادا ، اسپانیا ، 16 سپتامبر 2018 ، مقاله های منتخب تجدید نظر شده: علوم کامپیوتر، پردازش تصویر و بینایی کامپیوتری، شبکه های ارتباطی کامپیوتری، داده کاوی و کشف دانش
در صورت تبدیل فایل کتاب Statistical Atlases and Computational Models of the Heart. Atrial Segmentation and LV Quantification Challenges: 9th International Workshop, STACOM 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 16, 2018, Revised Selected Papers به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب اطلسهای آماری و مدلهای محاسباتی قلب. چالش های تقسیم بندی دهلیزی و کمیت LV: نهمین کارگاه بین المللی ، STACOM 2018 ، همراه با MICCAI 2018 ، گرانادا ، اسپانیا ، 16 سپتامبر 2018 ، مقاله های منتخب تجدید نظر شده نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب مجموعه مقالات پس از کارگاه آموزشی نهمین کارگاه بین
المللی اطلس های آماری و مدل های محاسباتی قلب: بخش بندی دهلیزی
و چالش های کمی سازی LV، STACOM 2018 است که در ارتباط با
MICCAI 2018، در گرانادا برگزار شد، تشکیل شده است. ، اسپانیا،
در سپتامبر 2018.
52 مقاله کارگاه کامل اصلاح شده به دقت بررسی و از 60 مورد
ارسالی انتخاب شدند. موضوعات این کارگاه شامل: تصویربرداری و
پردازش تصویر قلب، یادگیری ماشینی کاربردی در تصویربرداری قلب و
تجزیه و تحلیل تصویر، ساخت اطلس، مدلسازی آماری عملکرد قلب در
جمعیتهای مختلف بیماران، فیزیولوژی محاسباتی قلب، سفارشیسازی
مدل، تحلیل عملکردی مبتنی بر اطلس، طرحوارههای هستیشناسی
بود. برای دادهها و نتایج، تحلیلهای عملکردی و ساختاری
یکپارچه، و همچنین کاربرد پیشبالینی و بالینی این روشها.
This book constitutes the thoroughly refereed post-workshop
proceedings of the 9th International Workshop on Statistical
Atlases and Computational Models of the Heart: Atrial
Segmentation and LV Quantification Challenges, STACOM 2018,
held in conjunction with MICCAI 2018, in Granada, Spain, in
September 2018.
The 52 revised full workshop papers were carefully reviewed
and selected from 60 submissions. The topics of the workshop
included: cardiac imaging and image processing, machine
learning applied to cardiac imaging and image analysis, atlas
construction, statistical modelling of cardiac function
across different patient populations, cardiac computational
physiology, model customization, atlas based functional
analysis, ontological schemata for data and results,
integrated functional and structural analyses, as well as the
pre-clinical and clinical applicability of these methods.
Front Matter ....Pages I-XIV
Front Matter ....Pages 1-1
Estimating Sheets in the Heart Wall (Tabish A. Syed, Babak Samari, Kaleem Siddiqi)....Pages 3-11
Automated Motion Correction and 3D Vessel Centerlines Reconstruction from Non-simultaneous Angiographic Projections (Abhirup Banerjee, Rajesh K. Kharbanda, Robin P. Choudhury, Vicente Grau)....Pages 12-20
Left Ventricle Segmentation and Quantification from Cardiac Cine MR Images via Multi-task Learning (Shusil Dangi, Ziv Yaniv, Cristian A. Linte)....Pages 21-31
Statistical Shape Clustering of Left Atrial Appendages (Jakob M. Slipsager, Kristine A. Juhl, Per E. Sigvardsen, Klaus F. Kofoed, Ole De Backer, Andy L. Olivares et al.)....Pages 32-39
Deep Learning Segmentation of the Left Ventricle in Structural CMR: Towards a Fully Automatic Multi-scan Analysis (Hakim Fadil, John J. Totman, Stephanie Marchesseau)....Pages 40-48
Cine and Multicontrast Late Enhanced MRI Registration for 3D Heart Model Construction (Fumin Guo, Mengyuan Li, Matthew Ng, Graham Wright, Mihaela Pop)....Pages 49-57
Joint Analysis of Personalized In-Silico Haemodynamics and Shape Descriptors of the Left Atrial Appendage (Jordi Mill, Andy L. Olivares, Etelvino Silva, Ibai Genua, Alvaro Fernandez, Ainhoa Aguado et al.)....Pages 58-66
How Accurately Does Transesophageal Echocardiography Identify the Mitral Valve? (Claire Vannelli, Wenyao Xia, John Moore, Terry Peters)....Pages 67-76
Stochastic Model-Based Left Ventricle Segmentation in 3D Echocardiography Using Fractional Brownian Motion (Omar S. Al-Kadi, Allen Lu, Albert J. Sinusas, James S. Duncan)....Pages 77-84
Context Aware 3D Fully Convolutional Networks for Coronary Artery Segmentation (Yongjie Duan, Jianjiang Feng, Jiwen Lu, Jie Zhou)....Pages 85-93
Learning Associations Between Clinical Information and Motion-Based Descriptors Using a Large Scale MR-derived Cardiac Motion Atlas (Esther Puyol-Antón, Bram Ruijsink, Hélène Langet, Mathieu De Craene, Paolo Piro, Julia A. Schnabel et al.)....Pages 94-102
Computational Modelling of Electro-Mechanical Coupling in the Atria and Its Changes During Atrial Fibrillation (Sofia Monaci, David Nordsletten, Oleg Aslanidi)....Pages 103-113
High Throughput Computation of Reference Ranges of Biventricular Cardiac Function on the UK Biobank Population Cohort (Rahman Attar, Marco Pereañez, Ali Gooya, Xènia Albà, Le Zhang, Stefan K. Piechnik et al.)....Pages 114-121
Lumen Segmentation of Aortic Dissection with Cascaded Convolutional Network (Ziyan Li, Jianjiang Feng, Zishun Feng, Yunqiang An, Yang Gao, Bin Lu et al.)....Pages 122-130
A Vessel-Focused 3D Convolutional Network for Automatic Segmentation and Classification of Coronary Artery Plaques in Cardiac CTA (Jiang Liu, Cheng Jin, Jianjiang Feng, Yubo Du, Jiwen Lu, Jie Zhou)....Pages 131-141
Semi-automated Image Segmentation of the Midsystolic Left Ventricular Mitral Valve Complex in Ischemic Mitral Regurgitation (Ahmed H. Aly, Abdullah H. Aly, Mahmoud Elrakhawy, Kirlos Haroun, Luis Prieto-Riascos, Robert C. Gorman Jr. et al.)....Pages 142-151
Atrial Scar Segmentation via Potential Learning in the Graph-Cut Framework (Lei Li, Guang Yang, Fuping Wu, Tom Wong, Raad Mohiaddin, David Firmin et al.)....Pages 152-160
4D Cardiac Motion Modeling Using Pair-Wise Mesh Registration (Siyeop Yoon, Stephen Baek, Deukhee Lee)....Pages 161-170
ISACHI: Integrated Segmentation and Alignment Correction for Heart Images (Benjamin Villard, Ernesto Zacur, Vicente Grau)....Pages 171-180
3D LV Probabilistic Segmentation in Cardiac MRI Using Generative Adversarial Network (Dong Yang, Bo Liu, Leon Axel, Dimitris Metaxas)....Pages 181-190
A Two-Stage U-Net Model for 3D Multi-class Segmentation on Full-Resolution Cardiac Data (Chengjia Wang, Tom MacGillivray, Gillian Macnaught, Guang Yang, David Newby)....Pages 191-199
Centreline-Based Shape Descriptors of the Left Atrial Appendage in Relation with Thrombus Formation (Ibai Genua, Andy L. Olivares, Etelvino Silva, Jordi Mill, Alvaro Fernandez, Ainhoa Aguado et al.)....Pages 200-208
Front Matter ....Pages 209-209
Automatic 3D Atrial Segmentation from GE-MRIs Using Volumetric Fully Convolutional Networks (Qing Xia, Yuxin Yao, Zhiqiang Hu, Aimin Hao)....Pages 211-220
Automatically Segmenting the Left Atrium from Cardiac Images Using Successive 3D U-Nets and a Contour Loss (Shuman Jia, Antoine Despinasse, Zihao Wang, Hervé Delingette, Xavier Pennec, Pierre Jaïs et al.)....Pages 221-229
Fully Automated Left Atrium Cavity Segmentation from 3D GE-MRI by Multi-atlas Selection and Registration (Mengyun Qiao, Yuanyuan Wang, Rob J. van der Geest, Qian Tao)....Pages 230-236
Pyramid Network with Online Hard Example Mining for Accurate Left Atrium Segmentation (Cheng Bian, Xin Yang, Jianqiang Ma, Shen Zheng, Yu-An Liu, Reza Nezafat et al.)....Pages 237-245
Combating Uncertainty with Novel Losses for Automatic Left Atrium Segmentation (Xin Yang, Na Wang, Yi Wang, Xu Wang, Reza Nezafat, Dong Ni et al.)....Pages 246-254
Attention Based Hierarchical Aggregation Network for 3D Left Atrial Segmentation (Caizi Li, Qianqian Tong, Xiangyun Liao, Weixin Si, Yinzi Sun, Qiong Wang et al.)....Pages 255-264
Segmentation of the Left Atrium from 3D Gadolinium-Enhanced MR Images with Convolutional Neural Networks (Chandrakanth Jayachandran Preetha, Shyamalakshmi Haridasan, Vahid Abdi, Sandy Engelhardt)....Pages 265-272
V-FCNN: Volumetric Fully Convolution Neural Network for Automatic Atrial Segmentation (Nicoló Savioli, Giovanni Montana, Pablo Lamata)....Pages 273-281
Ensemble of Convolutional Neural Networks for Heart Segmentation (Wilson Fok, Kevin Jamart, Jichao Zhao, Justin Fernandez)....Pages 282-291
Multi-task Learning for Left Atrial Segmentation on GE-MRI (Chen Chen, Wenjia Bai, Daniel Rueckert)....Pages 292-301
Left Atrial Segmentation Combining Multi-atlas Whole Heart Labeling and Shape-Based Atlas Selection (Marta Nuñez-Garcia, Xiahai Zhuang, Gerard Sanroma, Lei Li, Lingchao Xu, Constantine Butakoff et al.)....Pages 302-310
Deep Learning Based Method for Left Atrial Segmentation in GE-MRI (Yashu Liu, Yangyang Dai, Cong Yan, Kuanquan Wang)....Pages 311-318
Dilated Convolutions in Neural Networks for Left Atrial Segmentation in 3D Gadolinium Enhanced-MRI (Sulaiman Vesal, Nishant Ravikumar, Andreas Maier)....Pages 319-328
A Semantic-Wise Convolutional Neural Network Approach for 3-D Left Atrium Segmentation from Late Gadolinium Enhanced Magnetic Resonance Imaging (Davide Borra, Alessandro Masci, Lorena Esposito, Alice Andalò, Claudio Fabbri, Cristiana Corsi)....Pages 329-338
Left Atrial Segmentation in a Few Seconds Using Fully Convolutional Network and Transfer Learning (Élodie Puybareau, Zhou Zhao, Younes Khoudli, Edwin Carlinet, Yongchao Xu, Jérôme Lacotte et al.)....Pages 339-347
Convolutional Neural Networks for Segmentation of the Left Atrium from Gadolinium-Enhancement MRI Images (Coen de Vente, Mitko Veta, Orod Razeghi, Steven Niederer, Josien Pluim, Kawal Rhode et al.)....Pages 348-356
Mixture Modeling of Global Shape Priors and Autoencoding Local Intensity Priors for Left Atrium Segmentation (Tim Sodergren, Riddhish Bhalodia, Ross Whitaker, Joshua Cates, Nassir Marrouche, Shireen Elhabian)....Pages 357-367
Front Matter ....Pages 369-369
Left-Ventricle Quantification Using Residual U-Net (Eric Kerfoot, James Clough, Ilkay Oksuz, Jack Lee, Andrew P. King, Julia A. Schnabel)....Pages 371-380
Left Ventricle Full Quantification Using Deep Layer Aggregation Based Multitask Relationship Learning (Jiahui Li, Zhiqiang Hu)....Pages 381-388
Convexity and Connectivity Principles Applied for Left Ventricle Segmentation and Quantification (Elias Grinias, Georgios Tziritas)....Pages 389-401
Calculation of Anatomical and Functional Metrics Using Deep Learning in Cardiac MRI: Comparison Between Direct and Segmentation-Based Estimation (Hao Xu, Jurgen E. Schneider, Vicente Grau)....Pages 402-411
Automated Full Quantification of Left Ventricle with Deep Neural Networks (Lihong Liu, Jin Ma, Jianzong Wang, Jing Xiao)....Pages 412-420
ESU-P-Net: Cascading Network for Full Quantification of Left Ventricle from Cine MRI (Wenjun Yan, Yuanyuan Wang, Shaoxiang Chen, Rob J. van der Geest, Qian Tao)....Pages 421-428
Left Ventricle Full Quantification via Hierarchical Quantification Network (Guanyu Yang, Tiancong Hua, Chao Lu, Tan Pan, Xiao Yang, Liyu Hu et al.)....Pages 429-438
Automatic Left Ventricle Quantification in Cardiac MRI via Hierarchical Refinement of High-Level Features by a Salient Perceptual Grouping Model (Angélica Atehortúa, Mireille Garreau, David Romo-Bucheli, Eduardo Romero)....Pages 439-449
Cardiac MRI Left Ventricle Segmentation and Quantification: A Framework Combining U-Net and Continuous Max-Flow (Fumin Guo, Matthew Ng, Graham Wright)....Pages 450-458
Multi-estimator Full Left Ventricle Quantification Through Ensemble Learning (Jiasha Liu, Xiang Li, Hui Ren, Quanzheng Li)....Pages 459-465
Left Ventricle Quantification Through Spatio-Temporal CNNs (Alejandro Debus, Enzo Ferrante)....Pages 466-475
Full Quantification of Left Ventricle Using Deep Multitask Network with Combination of 2D and 3D Convolution on 2D + t Cine MRI (Yeonggul Jang, Sekeun Kim, Hackjoon Shim, Hyuk-Jae Chang)....Pages 476-483
Back Matter ....Pages 485-487