دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 2nd
نویسندگان: Prabhanjan Narayanachar Tattar
سری:
ISBN (شابک) : 9781788621199
ناشر: Packt
سال نشر: 2017
تعداد صفحات: 414
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 7 مگابایت
در صورت تبدیل فایل کتاب Statistical Application Development with R and Python به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب توسعه برنامه های آماری با R و Python نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
پیادهسازی نرمافزار نشاندادهشده با R و Python درباره این کتاب* ماهیت دادهها را از طریق نرمافزاری که مفاهیم اولیه را بلافاصله با استفاده از R و Python میگیرد بیاموزید.* مدلسازی و تجسم دادهها را برای انجام تجزیه و تحلیل آماری کارآمد با این راهنما درک کنید.* با تکنیکها به خوبی آشنا شوید. مانند رگرسیون، خوشهبندی، طبقهبندی، ماشینهای بردار پشتیبان و موارد دیگر برای یادگیری اصول آمار مدرن. پس این کتاب همان چیزی است که شما نیاز دارید. هیچ دانش قبلی لازم نیست. دانشمند مشتاق داده، کاربران R در تلاش برای یادگیری پایتون و بالعکس چه خواهید آموخت* ماهیت داده ها را از طریق نرم افزار با مفاهیم اولیه بلافاصله در R بیاموزید* داده ها را از منابع مختلف بخوانید و خروجی R را به نرم افزارهای دیگر صادر کنید* انجام تجسم موثر داده ها با ماهیت متغیرها و گزینههای جایگزین غنی * تجزیه و تحلیل دادههای اکتشافی را برای درک اولیه مفید و ایجاد نگرش صحیح نسبت به استنتاج مؤثر انجام دهید * استنتاج آماری را از طریق شبیهسازی با ترکیب استنتاج کلاسیک و قدرت محاسباتی مدرن بیاموزید. در مدلهای رگرسیونی مانند خطی و لجستیک برای رگرسیون های پیوسته و گسسته برای تشکیل مبانی آمار مدرن* خود را با CART معرفی کنید - ابزار یادگیری ماشینی که زمانی بسیار مفید است که داده ها دارای غیرخطی بودن ذاتی باشند. تحلیل آماری جزئی شامل جمع آوری و بررسی داده ها برای توصیف ماهیت داده ها نیاز به تحلیل دارد این کتاب به شما کمک میکند تا رابطه دادهها را کشف کنید و مدلهایی بسازید تا تصمیمهای بهتری بگیرید. این کتاب مفاهیم آماری را همراه با R و Python بررسی میکند، که به خوبی از کلمه go یکپارچه شدهاند. تقریباً هر مفهومی دارای یک کد R است که قدرت R و برنامههای کاربردی را نشان میدهد. کد R و برنامه ها با برنامه های مشابه پایتون تقویت شده اند. بنابراین، ابتدا ویژگی های داده ها، آمار توصیفی و نگرش اکتشافی را درک خواهید کرد که به شما پایه محکمی برای تجزیه و تحلیل داده ها می دهد. استنتاج آماری پایه فنی روش های آماری را تکمیل می کند. رگرسیون، مدلسازی خطی، لجستیک و CART، جعبه ابزار ضروری را میسازد. این به شما کمک می کند تا مشکلات پیچیده را در دنیای واقعی کامل کنید. شما با درک مختصری از ماهیت داده ها شروع می کنید و با مدل های آماری مدرن و پیشرفته مانند CART پایان می دهید. هر مرحله با DATA و کد R برداشته میشود و توسط Python بهبود مییابد. سفر تجزیه و تحلیل دادهها با تجزیه و تحلیل اکتشافی آغاز میشود که بیش از خلاصه دادههای ساده و توصیفی است. سپس مدلسازی رگرسیون خطی را اعمال میکنید و با رگرسیون لجستیک، CART و آمار فضایی پایان میدهید. در پایان این کتاب میتوانید یادگیری آماری خود را در حوزههای اصلی در محل کار یا پروژههای خود به کار ببرید. سبک و رویکرد توسعه بهتر و بهتر روش های هوشمندتر برای تجزیه و تحلیل داده ها تصمیم گیری بهتر/پیش بینی های آینده نحوه کاوش، تجسم و انجام تجزیه و تحلیل آماری را بیاموزید. روش های آماری و محاسباتی بهتر و کارآمدتر. برای تسلط بر یادگیری خود مثال های عملی را اجرا کنید
Software Implementation Illustrated with R and PythonAbout This Book* Learn the nature of data through software which takes the preliminary concepts right away using R and Python.* Understand data modeling and visualization to perform efficient statistical analysis with this guide.* Get well versed with techniques such as regression, clustering, classification, support vector machines and much more to learn the fundamentals of modern statistics.Who This Book Is ForIf you want to have a brief understanding of the nature of data and perform advanced statistical analysis using both R and Python, then this book is what you need. No prior knowledge is required. Aspiring data scientist, R users trying to learn Python and vice versaWhat You Will Learn* Learn the nature of data through software with preliminary concepts right away in R* Read data from various sources and export the R output to other software* Perform effective data visualization with the nature of variables and rich alternative options* Do exploratory data analysis for useful first sight understanding building up to the right attitude towards effective inference* Learn statistical inference through simulation combining the classical inference and modern computational power* Delve deep into regression models such as linear and logistic for continuous and discrete regressands for forming the fundamentals of modern statistics* Introduce yourself to CART - a machine learning tool which is very useful when the data has an intrinsic nonlinearityIn DetailStatistical Analysis involves collecting and examining data to describe the nature of data that needs to be analyzed. It helps you explore the relation of data and build models to make better decisions.This book explores statistical concepts along with R and Python, which are well integrated from the word go. Almost every concept has an R code going with it which exemplifies the strength of R and applications. The R code and programs have been further strengthened with equivalent Python programs. Thus, you will first understand the data characteristics, descriptive statistics and the exploratory attitude, which will give you firm footing of data analysis. Statistical inference will complete the technical footing of statistical methods. Regression, linear, logistic modeling, and CART, builds the essential toolkit. This will help you complete complex problems in the real world.You will begin with a brief understanding of the nature of data and end with modern and advanced statistical models like CART. Every step is taken with DATA and R code, and further enhanced by Python.The data analysis journey begins with exploratory analysis, which is more than simple, descriptive, data summaries. You will then apply linear regression modeling, and end with logistic regression, CART, and spatial statistics.By the end of this book you will be able to apply your statistical learning in major domains at work or in your projects.Style and approachDeveloping better and smarter ways to analyze data. Making better decisions/future predictions. Learn how to explore, visualize and perform statistical analysis. Better and efficient statistical and computational methods. Perform practical examples to master your learning
Cover Copyright Credits About the Author Acknowledgment About the Reviewers www.PacktPub.com Customer Feedback Table of Contents Preface Chapter 1: Data Characteristics Questionnaire and its components Understanding the data characteristics in an R environment Experiments with uncertainty in computer science Installing and setting up R Using R packages RSADBE – the books R package Python installation and setup Using pip for packages IDEs for R and Python The companion code bundle Discrete distributions Discrete uniform distribution Binomial distribution Hypergeometric distribution Negative binomial distribution Poisson distribution Continuous distributions Uniform distribution Exponential distribution Normal distribution Summary Chapter 2: Import/Export Data Packages and settings – R and Python Understanding data.frame and other formats Constants, vectors, and matrices Time for action – understanding constants, vectors, and basic arithmetic What just happened? Doing it in Python Time for action – matrix computations What just happened? Doing it in Python The list object Time for action – creating a list object What just happened? The data.frame object Time for action – creating a data.frame object What just happened? Have a go hero The table object Time for action – creating the Titanic dataset as a table object What just happened? Have a go hero Using utils and the foreign packages Time for action – importing data from external files What just happened? Doing it in Python Importing data from MySQL Doing it in Python Exporting data/graphs Exporting R objects Exporting graphs Time for action – exporting a graph What just happened? Managing R sessions Time for action – session management What just happened? Doing it in Python Pop quiz Summary Chapter 3: Data Visualization Packages and settings – R and Python Visualization techniques for categorical data Bar chart Going through the built-in examples of R Time for action – bar charts in R What just happened? Doing it in Python Have a go hero Dot chart Time for action – dot charts in R What just happened? Doing it in Python Spine and mosaic plots Time for action – spine plot for the shift and operator data What just happened? Time for action – mosaic plot for the Titanic dataset What just happened? Pie chart and the fourfold plot Visualization techniques for continuous variable data Boxplot Time for action – using the boxplot What just happened? Doing it in Python Histogram Time for action – understanding the effectiveness of histograms What just happened? Doing it in Python Have a go hero Scatter plot Time for action – plot and pairs R functions What just happened? Doing it in Python Have a go hero Pareto chart A brief peek at ggplot2 Time for action – qplot What just happened? Time for action – ggplot What just happened? Pop quiz Summary Chapter 4: Exploratory Analysis Packages and settings – R and Python Essential summary statistics Percentiles, quantiles, and median Hinges Interquartile range Time for action – the essential summary statistics for The Wall dataset What just happened? Techniques for exploratory analysis The stem-and-leaf plot Time for action – the stem function in play What just happened? Letter values Data re-expression Have a go hero Bagplot – a bivariate boxplot Time for action – the bagplot display for multivariate datasets What just happened? Resistant line Time for action – resistant line as a first regression model What just happened? Smoothing data Time for action – smoothening the cow temperature data What just happened? Median polish Time for action – the median polish algorithm What just happened? Have a go hero Summary Chapter 5: Statistical Inference Packages and settings – R and Python Maximum likelihood estimator Visualizing the likelihood function Time for action – visualizing the likelihood function What just happened? Doing it in Python Finding the maximum likelihood estimator Using the fitdistr function Time for action – finding the MLE using mle and fitdistr functions What just happened? Confidence intervals Time for action – confidence intervals What just happened? Doing it in Python Hypothesis testing Binomial test Time for action – testing probability of success What just happened? Tests of proportions and the chi-square test Time for action – testing proportions What just happened? Tests based on normal distribution – one sample Time for action – testing one-sample hypotheses What just happened? Have a go hero Tests based on normal distribution – two sample Time for action – testing two-sample hypotheses What just happened? Have a go hero Doing it in Python Summary Chapter 6: Linear Regression Analysis Packages and settings - R and Python The essence of regression The simple linear regression model What happens to the arbitrary choice of parameters? Time for action - the arbitrary choice of parameters What just happened? Building a simple linear regression model Time for action - building a simple linear regression model What just happened? Have a go hero ANOVA and the confidence intervals Time for action - ANOVA and the confidence intervals What just happened? Model validation Time for action - residual plots for model validation What just happened? Doing it in Python Have a go hero Multiple linear regression model Averaging k simple linear regression models or a multiple linear regression model Time for action - averaging k simple linear regression models What just happened? Building a multiple linear regression model Time for action - building a multiple linear regression model What just happened? The ANOVA and confidence intervals for the multiple linear regression model Time for action - the ANOVA and confidence intervals for the multiple linear regression model What just happened? Have a go hero Useful residual plots Time for action - residual plots for the multiple linear regression model What just happened? Regression diagnostics Leverage points Influential points DFFITS and DFBETAS The multicollinearity problem Time for action - addressing the multicollinearity problem for the gasoline data What just happened? Doing it in Python Model selection Stepwise procedures The backward elimination The forward selection The stepwise regression Criterion-based procedures Time for action - model selection using the backward, forward, and AIC criteria What just happened? Have a go hero Summary Chapter 7: Logistic Regression Model Packages and settings – R and Python The binary regression problem Time for action – limitation of linear regression model What just happened? Probit regression model Time for action – understanding the constants What just happened? Doing it in Python Logistic regression model Time for action – fitting the logistic regression model What just happened? Doing it in Python Hosmer-Lemeshow goodness-of-fit test statistic Time for action – Hosmer-Lemeshow goodness-of-fit statistic What just happened? Model validation and diagnostics Residual plots for the GLM Time for action – residual plots for logistic regression model What just happened? Doing it in Python Have a go hero Influence and leverage for the GLM Time for action – diagnostics for the logistic regression What just happened? Have a go hero Receiving operator curves Time for action – ROC construction What just happened? Doing it in Python Logistic regression for the German credit screening dataset Time for action – logistic regression for the German credit dataset What just happened? Doing it in Python Have a go hero Summary Chapter 8: Regression Models with Regularization Packages and settings – R and Python The overfitting problem Time for action – understanding overfitting What just happened? Doing it in Python Have a go hero Regression spline Basis functions Piecewise linear regression model Time for action – fitting piecewise linear regression models What just happened? Natural cubic splines and the general B-splines Time for action – fitting the spline regression models What just happened? Ridge regression for linear models Protecting against overfitting Time for action – ridge regression for the linear regression model What just happened? Doing it in Python Ridge regression for logistic regression models Time for action – ridge regression for the logistic regression model What just happened? Another look at model assessment Time for action – selecting  iteratively and other topics What just happened? Pop quiz Summary Chapter 9: Classification and Regression Trees Packages and settings – R and Python Understanding recursive partitions Time for action – partitioning the display plot What just happened? Splitting the data The first tree Time for action – building our first tree What just happened? Constructing a regression tree Time for action – the construction of a regression tree What just happened? Constructing a classification tree Time for action – the construction of a classification tree What just happened? Doing it in Python Classification tree for the German credit data Time for action – the construction of a classification tree What just happened? Doing it in Python Have a go hero Pruning and other finer aspects of a tree Time for action – pruning a classification tree What just happened? Pop quiz Summary Chapter 10: CART and Beyond Packages and settings – R and Python Improving the CART Time for action – cross-validation predictions What just happened? Understanding bagging The bootstrap Time for action – understanding the bootstrap technique What just happened? How the bagging algorithm works Time for action – the bagging algorithm What just happened? Doing it in Python Random forests Time for action – random forests for the German credit data What just happened? Doing it in Python The consolidation Time for action – random forests for the low birth weight data What just happened? Summary Index