دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: Third نویسندگان: Matthew G. Karlaftis, Simon Washington, Panagiotis Ch Anastasopoulos, Fred L. Mannering سری: Chapman & Hall/CRC interdisciplinary statistics series ISBN (شابک) : 9780429244018, 0429520751 ناشر: سال نشر: 2020 تعداد صفحات: 497 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 15 مگابایت
در صورت تبدیل فایل کتاب Statistical and econometric methods for transportation data analysis. به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب روشهای آماری و اقتصادسنجی برای تجزیه و تحلیل داده های حمل و نقل نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Half Title Series Page Title Page Copyright Page Table of Contents Preface Authors Section I: Fundamentals 1: Statistical Inference I: Descriptive Statistics 1.1 Measures of Relative Standing 1.2 Measures of Central Tendency 1.3 Measures of Variability 1.4 Skewness and Kurtosis 1.5 Measures of Association 1.6 Properties of Estimators 1.6.1 Unbiasedness 1.6.2 Efficiency 1.6.3 Consistency 1.6.4 Sufficiency 1.7 Methods of Displaying Data 1.7.1 Histograms 1.7.2 Ogives 1.7.3 Box Plots 1.7.4 Scatter Diagrams 1.7.5 Bar and Line Charts 2: Statistical Inference II: Interval Estimation, Hypothesis Testing, and Population Comparisons Descriptive Statistics 2.1 Confidence Intervals 2.1.1 Confidence Interval for µ with Known σ2 2.1.2 Confidence Interval for the Mean with Unknown Variance 2.1.3 Confidence Interval for a Population Proportion 2.1.4 Confidence Interval for the Population Variance 2.2 Hypothesis Testing 2.2.1 Mechanics of Hypothesis Testing 2.2.2 Formulating One- and Two-Tailed Hypothesis Tests 2.2.3 The p-Value of a Hypothesis Test 2.3 Inferences Regarding a Single Population 2.3.1 Testing the Population Mean with Unknown Variance 2.3.2 Testing the Population Variance 2.3.3 Testing for a Population Proportion 2.4 Comparing Two Populations 2.4.1 Testing Differences between Two Means: Independent Samples 2.4.2 Testing Differences between Two Means: Paired Observations 2.4.3 Testing Differences between Two Population Proportions 2.4.4 Testing the Equality of Two Population Variances 2.5 Nonparametric Methods 2.5.1 The Sign Test 2.5.2 The Median Test 2.5.3 The Mann–Whitney U Test 2.5.4 The Wilcoxon-Signed Rank Test for Matched Pairs 2.5.5 The Kruskal–Wallis Test 2.5.6 The Chi-Square Goodness-of-Fit Test Section II: Continuous Dependent Variable Models 3: Linear Regression 3.1 Assumptions of the Linear Regression Model 3.1.1 Continuous Dependent Variable Y 3.1.2 Linear-in-Parameters Relationship between Y and X 3.1.3 Observations Independently and Randomly Sampled 3.1.4 Uncertain Relationship between Variables 3.1.5 Disturbance Term Independent of X and Expected Value Zero 3.1.6 Disturbance Terms Not Autocorrelated 3.1.7 Regressors and Disturbances Uncorrelated 3.1.8 Disturbances Approximately Normally Distributed 3.1.9 Summary 3.2 Regression Fundamentals 3.2.1 Least Squares Estimation 3.2.2 Maximum Likelihood Estimation 3.2.3 Properties of OLS and MLE Estimators 3.2.4 Inference in Regression Analysis 3.3 Manipulating Variables in Regression 3.3.1 Standardized Regression Models 3.3.2 Transformations 3.3.3 Indicator Variables 3.4 Estimate a Single Beta Parameter 3.5 Estimate Beta Parameter for Ranges of the Variable 3.6 Estimate a Single Beta Parameter for m - 1 of the m Levels of the Variable 3.6.1 Interactions in Regression Models 3.7 Checking Regression Assumptions 3.7.1 Linearity 3.7.2 Homoscedastic Disturbances 3.7.3 Uncorrelated Disturbances 3.7.4 Exogenous Independent Variables 3.7.5 Normally Distributed Disturbances 3.8 Regression Outliers 3.8.1 The Hat Matrix for Identifying Outlying Observations 3.8.2 Standard Measures for Quantifying Outlier Influence 3.8.3 Removing Influential Data Points from the Regression 3.9 Regression Model Goodness-of-Fit Measures 3.10 Multicollinearity in the Regression 3.11 Regression Model-Building Strategies 3.11.1 Stepwise Regression 3.11.2 Best Subsets Regression 3.11.3 Iteratively Specified Tree-Based Regression 3.12 Estimating Elasticities 3.13 Censored Dependent Variables—Tobit Model 3.14 Box–Cox Regression 4: Violations of Regression Assumptions 4.1 Zero Mean of the Disturbances Assumption 4.2 Normality of the Disturbances Assumption 4.3 Uncorrelatedness of Regressors and Disturbances Assumption 4.4 Homoscedasticity of the Disturbances Assumption 4.4.1 Detecting Heteroscedasticity 4.4.2 Correcting for Heteroscedasticity 4.5 No Serial Correlation in the Disturbances Assumption 4.5.1 Detecting Serial Correlation 4.5.2 Correcting for Serial Correlation 4.6 Model Specification Errors 5: Simultaneous Equation Models 5.1 Overview of the Simultaneous Equations Problem 5.2 Reduced Form and the Identification Problem 5.3 Simultaneous Equation Estimation 5.3.1 Single Equation Methods 5.3.2 System Equation Methods 5.4 Seemingly Unrelated Equations 5.5 Applications of Simultaneous Equations to Transportation Data Appendix 5A: A Note on Generalized Least Squares Estimation 6: Panel Data Analysis 6.1 Issues in Panel Data Analysis 6.2 One-Way Error Component Models 6.2.1 Heteroscedasticity and Serial Correlation 6.3 Two-Way Error Component Models 6.4 Variable Parameter Models 6.5 Additional Topics and Extensions 7: Background and Exploration in Time Series 7.1 Exploring a Time Series 7.1.1 The Trend Component 7.1.2 The Seasonal Component 7.1.3 The Irregular (Random) Component 7.1.4 Filtering of Time Series 7.1.5 Curve Fitting 7.1.6 Linear Filters and Simple Moving Averages 7.1.7 Exponential Smoothing Filters 7.1.8 Difference Filter 7.2 Basic Concepts: Stationarity and Dependence 7.2.1 Stationarity 7.2.2 Dependence 7.2.3 Addressing Nonstationarity 7.2.4 Differencing and Unit-Root Testing 7.2.5 Fractional Integration and Long Memory 7.3 Time Series in Regression 7.3.1 Serial Correlation 7.3.2 Dynamic Dependence 7.3.3 Volatility 7.3.4 Spurious Regression and Cointegration 7.3.5 Causality 8: Forecasting in Time Series: Autoregressive Integrated Moving Average (ARIMA) Models and Extensions 8.1 Autoregressive Integrated Moving Average Models 8.2 The Box–Jenkins Approach 8.2.1 Order Selection 8.2.2 Parameter Estimation 8.2.3 Diagnostic Checking 8.2.4 Forecasting 8.3 Autoregressive Integrated Moving Average Model Extensions 8.3.1 Random Parameter Autoregressive (RPA) Models 8.3.2 Stochastic Volatility (SV) Models 8.3.3 Autoregressive Conditional Duration (ACD) Models 8.3.4 Integer-Valued ARMA (INARMA) Models 8.4 Multivariate Models 8.5 Nonlinear Models 8.5.1 Testing for Nonlinearity 8.5.2 Bilinear Models 8.5.3 Threshold Autoregressive Models 8.5.4 Functional Parameter Autoregressive Models 8.5.5 Neural Networks 9: Latent Variable Models 9.1 Principal Components Analysis 9.2 Factor Analysis 9.3 Structural Equation Modeling 9.3.1 Basic Concepts in Structural Equation Modeling 9.3.2 Fundamentals of Structural Equation Modeling 9.3.3 Nonideal Conditions in the Structural Equation Model 9.3.4 Model Goodness-of-Fit Measures 9.3.5 Guidelines for Structural Equation Modeling 10: Duration Models 10.1 Hazard-Based Duration Models 10.2 Characteristics of Duration Data 10.3 Nonparametric Models 10.4 Semi-Parametric Models 10.5 Fully Parametric Models 10.6 Comparisons of Nonparametric, Semi-Parametric, and Fully Parametric Models 10.7 Heterogeneity 10.8 State Dependence 10.9 Time-Varying Explanatory Variables 10.10 Discrete-Time Hazard Models 10.11 Competing Risk Models Section III: Count and Discrete-Dependent Variable Models 11: Count Data Models 11.1 Poisson Regression Model 11.2 Interpretation of Variables in the Poisson Regression Model 11.3 Poisson Regression Model Goodness-of-Fit Measures 11.4 Truncated Poisson Regression Model 11.5 Negative Binomial Regression Model 11.6 Zero-Inflated Poisson and Negative Binomial Regression Models 11.7 Random Effects Count Models 12: Logistic Regression 12.1 Principles of Logistic Regression 12.2 The Logistic Regression Model 13: Discrete Outcome Models 13.1 Models of Discrete Data 13.2 Binary and Multinomial Probit Models 13.3 Multinomial Logit Model 13.4 Discrete Data and Utility Theory 13.5 Properties and Estimation of Multinomial Logit Models 13.5.1 Statistical Evaluation 13.5.2 Interpretation of Findings 13.5.3 Specification Errors 13.5.4 Data Sampling 13.5.5 Forecasting and Aggregation Bias 13.5.6 Transferability 13.6 The Nested Logit Model (Generalized Extreme Value Models) 13.7 Special Properties of Logit Models 14: Ordered Probability Models 14.1 Models for Ordered Discrete Data 14.2 Ordered Probability Models with Random Effects 14.3 Limitations of Ordered Probability Models 15: Discrete/Continuous Models 15.1 Overview of the Discrete/Continuous Modeling Problem 15.2 Econometric Corrections: Instrumental Variables and Expected Value Method 15.3 Econometric Corrections: Selectivity-Bias Correction Term 15.4 Discrete/Continuous Model Structures 15.5 Transportation Application of Discrete/Continuous Model Structures Section IV: Other Statistical Methods 16: Random Parameters Models 16.1 Random Parameters Multinomial Logit Model (Mixed Logit Model) 16.2 Random Parameters Ordered Probability Models 16.3 Random Parameters Count Models 16.4 Random Parameters Duration Models 16.5 Random Parameters Linear Regression Models 16.6 Random Parameters with Heterogeneity in Means and Variances 16.7 Grouped Random Parameters Models 16.8 Random Thresholds Random Parameters Hierarchical Ordered Probit (HOPIT) Model 16.9 Zero-Inflated Hierarchical Ordered Probit (HOPIT) Model 16.10 Correlated Random Parameters Ordered Probit Model 16.11 Correlated Random Parameters Logit Model 16.12 Correlated Grouped Random Parameters Binary Logit Model 16.13 Correlated Grouped Random Parameters Hazard-Based Duration Model 16.14 Practical Aspects of Random Parameters Model Estimation 17: Latent Class (Finite Mixture) Models 17.1 Latent Class Multinomial Logit Model 17.2 Grouped and Ungrouped Latent Class Ordered Probit Models with and without Class Probability Functions 18: Bivariate and Multivariate Dependent Variable Models 18.1 Bivariate Ordered Probit 18.2 Bivariate Binary Probit 18.3 Multivariate Binary Probit 18.4 Simultaneous Estimation of Discrete Outcome and Continuous Dependent Variable Equations with Unrestricted Instruments: An Extension of the Maddala Model 19: Bayesian Statistical Methods 19.1 Bayes’ Theorem 19.2 Markov Chain Monte Carlo (MCMC) Sampling-Based Estimation 19.3 Flexibility of Bayesian Statistical Models via MCMC Sampling-Based Estimation 19.4 Convergence and Identifiability Issues with MCMC Bayesian Models 19.5 Goodness of Fit, Sensitivity Analysis, and Model Selection Criterion Using MCMC Bayesian Models Appendix A: Statistical Fundamentals Appendix B: Statistical Tables Appendix C: Variable Transformations References Index