دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: مهندسی مکانیک ویرایش: 2 نویسندگان: Friedel Hartmann. Peter Jahn سری: Springer Series in Solid and Structural Mechanics, 13 ISBN (شابک) : 3030558886, 9783030558888 ناشر: Springer سال نشر: 2021 تعداد صفحات: 476 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 19 مگابایت
در صورت تبدیل فایل کتاب Statics and Influence Functions: From a Modern Perspective به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب استاتیک و توابع تأثیر: از دیدگاه مدرن نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این ویرایش دوم توسعهیافته و اصلاحشده برای دانشجویان مهندسی و محققانی که با روشهای اجزا محدود در تحلیل سازهای و مکانیکی کار میکنند در نظر گرفته شده است. با بحث در مورد تحلیل ساختاری عددی از اصول اولیه مکانیکی و ریاضی، نقش مرکزی توابع تاثیر (توابع گرین) را در تحلیل اجزا محدود، تحلیل مجدد، تجزیه و تحلیل حساسیت، شناسایی پارامترها و در بهینهسازی، با تمرکز ویژه بر جنبههای محاسباتی و پرسشهای دقت، تعیین میکند. . همچنین یک تحلیل مجدد با یک کلیک ارائه میکند، تکنیک جدیدی که اجازه میدهد تغییرات آنی در یک ساختار با کلیک کردن روی عناصر منفرد انجام شود. در نهایت، این کتاب دارای چهار برنامه است که می توان آنها را برای حل معادله پواسون، الاستیسیته دو بعدی، مسائل خمش صفحه و قاب های مسطح دانلود کرد.
This extended and revised second edition is intended for engineering students and researchers working with finite element methods in structural and mechanical analysis. Discussing numerical structural analysis from first mechanical and mathematical principles, it establishes the central role of influence functions (Green's functions) in finite element analysis, reanalysis, sensitivity analysis, parameter identification and in optimization, with a particular focus on computational aspects and questions of accuracy. It also presents a one-click reanalysis, a new technique that allows instantaneous modifications to a structure to be made by clicking on single elements. Lastly, the book features four programs that can be downloaded for the solution of the Poisson equation, 2-D elasticity, plate-bending problems and planar frames.
Preface to the Second Edition Preface to the First Edition Contents 1 Foundation 1.1 Introduction 1.1.1 Integration by Parts 1.1.2 Principle of Virtual Displacements 1.1.3 Betti\'s Theorem 1.1.4 Influence Functions 1.1.5 Identities 1.2 Green\'s Identities 1.2.1 Longitudinal Displacement u(x) of a Bar 1.2.2 Shear Deformation wS(x) of a Beam 1.2.3 Deflection w of a Rope 1.2.4 Deflection w of a Beam 1.2.5 Deflection w of a Beam, 2nd Order Theory 1.2.6 Beam on an Elastic foundation 1.2.7 Tensile Chord Bridge 1.2.8 Torsion 1.3 Variational Principles of Structural Analysis 1.4 Zero Sums 1.5 Examples 1.5.1 The Principle of Virtual Displacements 1.5.2 Conservation of Energy 1.5.3 The Principle of Virtual Forces 1.6 Frames 1.7 Spring Support 1.8 Single Forces and Moments 1.9 Support Settlements 1.10 Springs 1.11 Temperature 1.12 The Complete Equation 1.13 Shortcuts 1.14 Duality 1.15 Mohr Versus Betti 1.16 Weak and Strong Influence Functions 1.17 The Canonical Boundary Values 1.18 The Reduction of the Dimension 1.19 Boundary Element Method 1.20 Finite Elements and Boundary Elements 1.21 Test Functions 1.22 Do Virtual Displacements Have to Be Small? 1.23 Only When in Equilibrium? 1.24 What Counts as Displacement and What as Force? 1.25 The Number of Force and Displacement Terms 1.26 Why the Minus in -Hw\'\' = p? 1.27 The Virtual Internal Energy 1.28 Castigliano\'s Theorem(s) 1.29 Equilibrium 1.30 The Mathematics Behind the Equilibrium Conditions 1.31 Balance and Second-Order Theory 1.32 Sources and Sinks 1.33 The Principle of Minimum Potential Energy 1.33.1 Minimum or Maximum? 1.33.2 Cracks 1.33.3 The Size of the Trial Space mathcalV 1.34 Infinite Energy 1.35 Sobolev\'s Embedding Theorem 1.36 Reduction Principle 1.37 The Force Method 1.38 Where Does It Run To? 1.39 Finite Elements and Green\'s Identity References 2 Betti\'s Theorem 2.1 Basics 2.2 Influence Functions for Displacements 2.2.1 Formulation 2.3 Influence Functions for Forces 2.3.1 Influence Function for N(x) 2.3.2 Influence Function for M(x) 2.3.3 Influence Function for V(x) 2.3.4 Settlement of a Support 2.3.5 Temperature Effects 2.3.6 Single Moments Differentiate the Influence Functions 2.4 Statically Determinate Structures 2.4.1 Pole-Plans 2.4.2 Construction of Pole-Plans 2.4.3 How to Determine the Magnitude of Rotations 2.4.4 Influence Function for a Shear Force, Fig. 2.17 2.4.5 Influence Function for a Normal Force, Fig. 2.18 2.4.6 Influence Function for a Moment, Fig. 2.19 2.4.7 Influence Function for a Moment, Fig. 2.20 2.4.8 Influence Function for a Shear Force, Fig. 2.21 2.4.9 Influence Function for Two Support Reactions, Fig. 2.22 2.4.10 Abutment Reaction, Fig. 2.23 2.5 Free Ends 2.6 Statically Indeterminate Structures 2.7 Influence Functions for Support Reactions 2.8 Jumps in Internal Forces 2.9 The Zeros of the Shear Force 2.10 Dirac Deltas 2.11 Dirac Energy 2.12 Point Values in 2-D and 3-D 2.13 Duality 2.14 The Adjoint Operator 2.15 Monopoles and Dipoles 2.16 The Leaning Tower of Pisa 2.17 Influence Functions for Integral Values 2.18 Influence Functions Integrate 2.19 St. Venant\'s Principle 2.20 Second-Order Theory References 3 Finite Elements 3.1 The Minimum 3.2 Why the Nodal Values of the Rope Are Exact 3.3 Adding the Local Solution 3.4 Projection 3.5 Equivalent Nodal Forces 3.6 Fixed End Forces 3.7 Shape Forces and the FE-load 3.8 How the Ball Got Rolling 3.9 Assembling the Element Matrices 3.10 Equivalent Stress Transformation 3.11 Calculation of Influence Functions with Finite Elements 3.12 Functionals 3.13 Generalized Influence Functions 3.14 Weak and Strong Influence Functions 3.15 The Local Influence Function 3.16 The Central Equation 3.17 Representation of an FE-solution 3.18 Frame Structures and J = gTf 3.19 State Vectors and Measurements 3.20 Maxwell\'s Theorem 3.21 The Inverse Stiffness Matrix 3.22 The Trial Space mathcalVh Has Two Bases 3.23 General Form of an FE-Influence Function 3.24 The Dominance of the Columns gi of the Inverse 3.25 Nature Makes No Jumps, but Finite Elements Do 3.26 The Path from the Source Point to the Load 3.27 The Columns of K and K-1 3.28 The Inverse as an Analysis Tool 3.29 Local Changes and the Inverse 3.30 Mohr and the Flexibility Matrix K-1 3.31 Non-uniform Plates 3.32 Sensitivity Plots 3.33 Support Reactions 3.34 If a Support Settles 3.35 Influence Function for a Rigid Support 3.36 Shear Forces 3.37 Influence Function for an Elastic Support 3.38 Elasticity Theory and Point Supports 3.39 Point Supports Are Hot Spots 3.40 The Amputated Dipole 3.41 A Dipole at the Edge 3.42 Single Force at a Node 3.43 Predeformations 3.44 The Limits of FE-Influence Functions 3.45 Checking Results 3.46 Transient Problems 3.47 The Intelligence of Functions References 4 Betti Extended 4.1 Proof 4.2 At Which Points Is the FE-Solution Exact? 4.3 Exact Values 4.4 One-Dimensional Problems 4.5 Isogeometric Analysis 4.6 Planar Problems 4.7 Point Supports 4.8 If the Solution Lies in mathcalVh 4.9 Patch Test 4.10 Adaptive Refinement 4.11 Pollution 4.11.1 Causes 4.11.2 Details 4.12 Super Convergence References 5 Stiffness Changes and Reanalysis 5.1 Parameter Identification 5.2 Introductory Remarks 5.3 Adding or Subtracting Stiffness 5.4 Dipoles and Monopoles 5.5 Displacements and Forces 5.6 Symmetry and Antisymmetry 5.7 Orthogonality 5.8 The Effects Fade Away 5.9 The Relevance of These Results 5.10 Frames 5.11 Forces j+ 5.12 Replacement as Alternative 5.13 The Derivative of the Inverse K-1 5.14 The Derivatives u/fk and u/kij 5.15 Integrating over the Defective Element 5.16 Mohr or the Weak Form of Influence Functions 5.17 Near and Far 5.18 Supports 5.19 Integral Bridges 5.20 Retrofitting 5.21 Classical Formulation 5.22 Calculation of uc 5.22.1 Iteration 5.22.2 Direct Solution 5.22.3 Support Stiffness 5.23 Sherman-Morrison-Woodbury 5.24 One-Click Reanalysis 5.24.1 When the Load ``Is Hit\'\' 5.24.2 Singular Stiffness Matrices 5.25 Subsequent Installation of Joints 5.26 Buckling Loads 5.27 Dynamic Problems 5.27.1 Antisymmetry in the Compensating Motions 5.28 The Continuum 5.28.1 Potential Theory 5.28.2 Kernels j+ 5.28.3 The Two Approaches References 6 Singularities 6.1 Singular Stresses 6.2 Singular Support Reactions 6.3 Single Forces 6.4 Decay of Stresses 6.5 Infinite Stresses 6.6 Symmetry of Adjoint Effects 6.7 Cantilever Wall Plate 6.8 Standard Situations 6.9 Singularities in Influence Functions 7 Mixed Formulations 7.1 Bernoulli Beam 7.2 Timoshenko Beam 7.3 Poisson Equation 7.4 The Plate Equation 7.5 Kirchhoff Plate 7.6 Reissner-Mindlin Plate 7.7 Influence Functions 7.8 Betti Extended Reference 8 Nonlinear Problems 8.1 Introduction 8.2 Gateaux Derivative 8.3 Nonlinear Bar 8.3.1 Newton\'s Method 8.4 Geometrically Nonlinear Beam 8.4.1 Conservation of Energy 8.5 Geometrically Nonlinear Kirchhoff Plate 8.6 Nonlinear Elasticity Theory 8.6.1 Linearization 8.6.2 A Truss Element in 3-D 8.6.3 Planar Problem 8.7 Nonlinear Functionals References 9 Addenda 9.1 Basics 9.2 Notation 9.3 FE-Notation 9.4 Vectors and Functions 9.5 The Algebra of the Identities 9.6 The Algebra of Finite Elements 9.7 Eigenvalues and Eigenvectors 9.8 mathcalVh and mathcalVh+ 9.9 Galerkin 9.10 Weak Solution 9.11 Variation and Green\'s First Identity 9.12 The Basic Functional (Hu-Washizu) 9.13 Force Method and Slope Deflection Method 9.14 The Adjoint Operator and Green\'s Function 9.15 Rope 9.16 Filter 9.17 Poisson Equation 9.18 Potentials and Potentials 9.19 Single Force Acting on a Plate 9.20 Multipoles 9.21 The Dimension of the fi 9.22 Weak and Strong Influence Functions 9.23 How the Embedding Theorem Got Its Name 9.24 Point Loads and Their Energy 9.25 Early Birds References 10 Software References Index