دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1 ed.] نویسندگان: Ayman S. El-Baz, Jasjit S. Suri سری: ISBN (شابک) : 0128197404, 9780128197400 ناشر: Academic Press سال نشر: 2021 تعداد صفحات: 324 [310] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 16 Mb
در صورت تبدیل فایل کتاب State of the Art in Neural Networks and Their Applications: Volume 1 به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب وضعیت هنر در شبکه های عصبی و کاربردهای آنها: جلد 1 نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
وضعیت هنر در شبکه های عصبی و کاربردهای آنها آخرین پیشرفت ها در شبکه های عصبی مصنوعی و کاربردهای آنها را در طیف گسترده ای از تشخیص های بالینی ارائه می دهد. پیشرفتها در نقش یادگیری ماشین، هوش مصنوعی، یادگیری عمیق، پردازش تصویر شناختی و تجزیه و تحلیل دادههای مناسب مفید برای تشخیص بالینی و کاربردهای تحقیقاتی، از جمله مطالعات موردی مرتبط، پوشش داده شدهاند. استفاده از روش های شبکه عصبی، هوش مصنوعی و یادگیری ماشین در تجزیه و تحلیل تصویر زیست پزشکی منجر به توسعه سیستم های تشخیصی به کمک رایانه (CAD) شده است که هدف آن تشخیص زودهنگام خودکار چندین بیماری شدید است. وضعیت هنر در شبکه های عصبی و کاربردهای آنها در دو جلد ارائه شده است. جلد 1 روش های یادگیری عمیق پیشرفته را برای تشخیص ناهنجاری های کلیوی، شبکیه، پستان، پوست و دندان و موارد دیگر پوشش می دهد. شامل کاربردهای شبکههای عصبی، هوش مصنوعی، یادگیری ماشینی و تکنیکهای یادگیری عمیق برای انواع فناوریهای تصویربرداری، پوشش فنی عمیق تشخیص به کمک رایانه (CAD)، با پوشش طبقهبندی به کمک رایانه، چارچوبهای یادگیری عمیق یکپارچه، ماموگرافی را ارائه میکند. تصویربرداری فوندوس، توموگرافی انسجام نوری، توموگرافی کرایو الکترونی، ام آر آی سه بعدی، سی تی و غیره یادگیری عمیق را برای چندین بیماری از جمله ناهنجاری های کلیوی، شبکیه، پستان، پوست و دندان، آنالیز تصویر پزشکی و همچنین تشخیص، تقسیم بندی پوشش می دهد. و طبقه بندی از طریق هوش مصنوعی
State of the Art in Neural Networks and Their Applications presents the latest advances in artificial neural networks and their applications across a wide range of clinical diagnoses. Advances in the role of machine learning, artificial intelligence, deep learning, cognitive image processing and suitable data analytics useful for clinical diagnosis and research applications are covered, including relevant case studies. The application of Neural Network, Artificial Intelligence, and Machine Learning methods in biomedical image analysis have resulted in the development of computer-aided diagnostic (CAD) systems that aim towards the automatic early detection of several severe diseases. State of the Art in Neural Networks and Their Applications is presented in two volumes. Volume 1 covers the state-of-the-art deep learning approaches for the detection of renal, retinal, breast, skin, and dental abnormalities and more. Includes applications of neural networks, AI, machine learning, and deep learning techniques to a variety of imaging technologies Provides in-depth technical coverage of computer-aided diagnosis (CAD), with coverage of computer-aided classification, Unified Deep Learning Frameworks, mammography, fundus imaging, optical coherence tomography, cryo-electron tomography, 3D MRI, CT, and more Covers deep learning for several medical conditions including renal, retinal, breast, skin, and dental abnormalities, Medical Image Analysis, as well as detection, segmentation, and classification via AI
Title-page_2021_State-of-the-Art-in-Neural-Networks-and-their-Applications State of the Art in Neural Networks and Their Applications Copyright_2021_State-of-the-Art-in-Neural-Networks-and-their-Applications Copyright Dedication_2021_State-of-the-Art-in-Neural-Networks-and-their-Applications Dedication Contents_2021_State-of-the-Art-in-Neural-Networks-and-their-Applications Contents List-of-Contributo_2021_State-of-the-Art-in-Neural-Networks-and-their-Applic List of Contributors Biographies_2021_State-of-the-Art-in-Neural-Networks-and-their-Applications Biographies Acknowledgments_2021_State-of-the-Art-in-Neural-Networks-and-their-Applicati Acknowledgments Chapter-1---Computer-aided-detection-of-abno_2021_State-of-the-Art-in-Neural 1 Computer-aided detection of abnormality in mammography using deep object detectors 1.1 Introduction 1.2 Literature review 1.3 Methodology 1.3.1 Architectures of deep convolutional neural networks and deep object detectors 1.3.2 Abnormality detection with faster R-convolutional neural networks 1.3.3 Abnormality detection with YOLO 1.4 Experimental results 1.4.1 Data preparation 1.4.2 Abnormality detection with faster R-convolutional neural networks 1.4.3 Abnormality detection with YOLO 1.4.4 Results comparison 1.5 Discussions 1.6 Conclusion References Chapter-2---Detection-of-retinal-abnormaliti_2021_State-of-the-Art-in-Neural 2 Detection of retinal abnormalities in fundus image using CNN deep learning networks 2.1 Introduction 2.2 Earlier screening and diagnosis of ocular diseases with CNN deep learning networks 2.2.1 Glaucoma 2.2.1.1 Methods and materials 2.2.1.2 Deep learning neural-network architectures for glaucoma screening and diagnosis 2.2.1.3 Application and evaluation on earlier glaucoma screening and diagnosis—classification 2.2.1.3.1 Fundus image glaucoma classification 2.2.1.3.2 Optical coherence tomography image glaucoma classification 2.2.1.4 Datasets used in glaucoma diagnosis 2.2.2 Age-related macular degeneration 2.2.2.1 Methods and materials 2.2.2.2 Deep learning–based methods for age-related macular degeneration detection and grading 2.2.3 Diabetic retinopathy 2.2.3.1 Methods and materials 2.2.3.2 Deep learning–based methods for diabetic retinopathy detection and grading 2.2.3.3 Dataset used diabetic retinopathy diagnosis 2.2.4 Cataract 2.2.4.1 Methods and materials 2.2.4.2 Deep learning–based methods for cataract detection and grading 2.3 Deep learning–based smartphone for detection of retinal abnormalities 2.3.1 Smartphone-captured fundus image evaluation 2.3.2 Deep learning–based method of ocular pathology detection from smartphone-captured fundus image 2.4 Discussion 2.5 Conclusion References Chapter-3---A-survey-of-deep-learning-based-_2021_State-of-the-Art-in-Neural 3 A survey of deep learning-based methods for cryo-electron tomography data analysis 3.1 Introduction 3.2 Deep learning-based methods 3.2.1 Detection and segmentation 3.2.2 Classification 3.2.3 Others 3.3 Conclusion References Chapter-4---Detection--segmentation--and-numbering-_2021_State-of-the-Art-in 4 Detection, segmentation, and numbering of teeth in dental panoramic images with mask regions with convolutional neural ne... 4.1 Introduction 4.2 Related work 4.3 Fédération Dentaire Internationale tooth numbering system 4.4 The method 4.4.1 Implementation details 4.4.1.1 Tooth numbering 4.5 Experimental analysis 4.5.1 Dataset 4.5.2 Evaluation 4.5.3 Results 4.6 Discussion and conclusions References Chapter-5---Accurate-identification-of-renal-tr_2021_State-of-the-Art-in-Neu 5 Accurate identification of renal transplant rejection: convolutional neural networks and diffusion MRI 5.1 Introduction 5.2 Methods 5.2.1 Kidney segmentation 5.2.2 Feature extraction 5.2.3 Renal transplant classification using deep convolutional neural network 5.3 Experimental results 5.4 Conclusion Acknowledgments References Chapter-6---Applications-of-the-ESPNet-_2021_State-of-the-Art-in-Neural-Netw 6 Applications of the ESPNet architecture in medical imaging 6.1 Introduction 6.2 Background 6.2.1 Standard convolution 6.2.2 Dilated convolution 6.3 The ESPNet architecture 6.3.1 Efficient spatial pyramid unit 6.3.1.1 Hierarchical feature fusion for degridding in the efficient spatial pyramid unit 6.3.2 Segmentation architecture 6.4 Experimental results 6.4.1 Breast biopsy whole slide image dataset 6.4.1.1 Dataset 6.4.1.2 Training 6.4.1.3 Segmentation results 6.4.1.4 Skip connections 6.4.1.5 Pyramidal spatial pooling as a decoding unit 6.4.1.6 Comparison with state-of-the-art methods 6.4.1.7 Tissue-level segmentation masks for computer-aided diagnosis 6.4.2 Brain tumor segmentation 6.4.2.1 Dataset 6.4.2.2 Training 6.4.2.3 Results 6.4.3 Other applications 6.5 Conclusion Acknowledgment References Chapter-7---Achievements-of-neural-netwo_2021_State-of-the-Art-in-Neural-Net 7 Achievements of neural network in skin lesions classification 7.1 Introduction 7.2 Literature review 7.3 Background 7.4 Dataset 7.5 Methodology 7.6 Results and discussion 7.7 Conclusion References Chapter-8---A-computer-aided-diagnosis-system-f_2021_State-of-the-Art-in-Neu 8 A computer-aided diagnosis system for breast cancer molecular subtype prediction in mammographic images 8.1 Introduction 8.2 Background 8.2.1 Breast cancer detection 8.2.2 Breast tumor segmentation 8.2.3 Shape classification 8.3 Datasets 8.4 Methodology 8.4.1 Modified Faster R-CNN for breast tumor detection 8.4.2 Breast tumor segmentation using conditional generative adversarial network 8.4.3 Shape descriptor using convolutional neural network 8.4.4 Breast cancer molecular subtypes correlation to the tumor shape 8.5 Conclusion References Chapter-9---Computer-aided-diagnos_2021_State-of-the-Art-in-Neural-Networks- 9 Computer-aided diagnosis of renal masses 9.1 Introduction 9.2 Segmentation of kidneys 9.2.1 Convolutional neural network 9.2.1.1 Convolutional layer 9.2.1.2 Detection layer 9.2.1.3 Pooling layer 9.2.2 U-Net 9.2.3 Performance evaluation of the algorithm 9.2.4 Deep learning–based methods for automated segmentation of kidney 9.3 Kidney tumor localization 9.4 Differentiation of malignant versus benign renal masses 9.5 Future perspectives References Chapter-10---Early-identification-of-acute-re_2021_State-of-the-Art-in-Neura 10 Early identification of acute rejection for renal allografts: a machine learning approach Acknowledgment 10.1 Introduction 10.2 Methods 10.2.1 Diffusion-weighted image markers 10.2.2 Clinical biomarkers 10.2.3 Integration process of clinical with imaging biomarkers 10.3 Experimental results 10.4 Conclusion References Chapter-11---Deep-learning-for-computer-ai_2021_State-of-the-Art-in-Neural-N 11 Deep learning for computer-aided diagnosis in ophthalmology: a review 11.1 Introduction 11.1.1 The burden of eye disease 11.1.2 Imaging and image analysis 11.1.3 Deep learning: an emerging state-of-the-art 11.2 Deep learning: the methods 11.2.1 Reference standards 11.2.2 Preprocessing and augmentation 11.2.3 Architectures, transfer learning, and ensembling 11.2.4 Loss functions and performance metrics 11.3 Limitations of the state-of-the-art 11.3.1 Trustworthiness and transparency 11.3.2 Uncertainty estimation 11.3.3 Explainability and interpretability 11.4 Beyond convolutional neural networks 11.4.1 Generative adversarial networks 11.4.2 Capsule networks 11.5 Conclusion References Chapter-12---Deep-learning-for-ophthalmol_2021_State-of-the-Art-in-Neural-Ne 12 Deep learning for ophthalmology using optical coherence tomography 12.1 Introduction 12.2 Optical coherence tomography 12.2.1 Variations of optical coherence tomography systems 12.2.1.1 Time-domain optical coherence tomography 12.2.1.2 Spectral domain optical coherence tomography 12.2.1.3 Polarization-sensitive optical coherence tomography 12.2.1.4 Swept-source optical coherence tomography 12.2.2 Optical coherence tomography datasets 12.2.3 Advantages and disadvantages of optical coherence tomography imaging 12.3 Retinal biomarkers and diseases 12.3.1 Important retinal diseases 12.3.1.1 Diabetic retinopathy and diabetic macular edema 12.3.1.2 Glaucoma 12.3.1.3 Age-related macular degeneration 12.3.2 Biomarker use in disease analysis 12.4 Traditional approaches for ophthalmic diagnosis 12.4.1 Image-processing fundamentals 12.4.2 Feature extraction fundamentals 12.4.3 Traditional classifiers 12.4.4 Applications 12.4.4.1 Denoising 12.4.4.2 Segmentation 12.4.4.3 Classification 12.5 Deep learning approaches to optical coherence tomography analysis 12.5.1 Convolutional neural network applications 12.5.2 Autoencoder applications 12.5.3 Generative adversarial network applications 12.6 Final thoughts Acknowledgment Conflict of interest References Further reading Chapter-13---Generative-adversarial-n_2021_State-of-the-Art-in-Neural-Networ 13 Generative adversarial networks in medical imaging 13.1 Introduction 13.2 Applications in medical imaging 13.2.1 Localization and classification 13.2.2 CS-MRI reconstruction 13.2.3 Customized medical products 13.3 Conclusions References Chapter-14---Deep-learning-from-small-label_2021_State-of-the-Art-in-Neural- 14 Deep learning from small labeled datasets applied to medical image analysis 14.1 Introduction 14.2 Cross-modality deep learning 14.2.1 Feature adaptation-based cross-modality learning 14.2.2 Data augmentation-based cross-modality learning 14.3 Example of cross-domain adaptation-based segmentation: lung tumor segmentation from MRI 14.3.1 Study population and datasets 14.3.2 Method 14.4 Results 14.5 Future outlook and discussion 14.6 Conclusion References Index_2021_State-of-the-Art-in-Neural-Networks-and-their-Applications Index