دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Angelo Bobak
سری:
ISBN (شابک) : 9781484286661, 9781484286678
ناشر: Apress
سال نشر: 2023
تعداد صفحات: 1069
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 96 Mb
در صورت تبدیل فایل کتاب SQL Server Analytical Toolkit: Using Windowing, Analytical, Ranking, and Aggregate Functions for Data and Statistical Analysis به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب SQL Server Analytical Toolkit: استفاده از توابع Windowing، Analytical، Ranking و Aggregate برای داده ها و تجزیه و تحلیل آماری نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Table of Contents About the Author About the Technical Reviewer Introduction Chapter 1: Partitions, Frames, and the OVER() Clause What Are Partitions and Window Frames? What Is an OVER() Clause? History of the OVER() Clause and Window Functions The Window Functions The OVER() Clause Syntax Partitions and Frames ROWS Frame Definition RANGE Frame Definition Example 1 ROWS and RANGE Default Behavior Scenario 1 Scenario 2 ROWS and RANGE Window Frame Examples Data Set Example 2 Example 3 Example 4 Example 5 Summary Chapter 2: Sales DW Use Case: Aggregate Functions Sales Data Warehouse Sales Data Warehouse Conceptual Model A Word About Performance Tuning Aggregate Functions COUNT(), MAX(), MIN(), AVG(), and SUM() Functions With OVER() GROUPING() Function GROUPING: Performance Tuning Considerations STRING_AGG Function STDEV() and STDEVP() Functions STDEV: Performance Tuning Considerations VAR() and VARP() Functions SQL Server 2022: Named Window Example Summary Chapter 3: Sales Use Case: Analytical Functions Analytical Functions CUME_DIST() Function Performance Considerations PERCENT_RANK() Function Performance Considerations High-Performance Strategy LAST_VALUE() and FIRST_VALUE() Performance Considerations LAG() and LEAD() Performance Considerations PERCENTILE_CONT() and PERCENTILE_DISC() Performance Considerations Using a Report Table Summary Chapter 4: Sales Use Case: Ranking/Window Functions Ranking/Window Functions RANK() vs. PERCENT_RANK() Performance Considerations RANK() vs. DENSE_RANK() Performance Considerations NTILE() Function Revisited Performance Considerations ROW_NUMBER() Function Performance Considerations Islands and Gaps Example Summary Chapter 5: Finance Use Case: Aggregate Functions Aggregate Functions COUNT() and SUM() Functions Performance Considerations SUM() Function Performance Considerations MIN() and MAX() Functions Performance Considerations AVG() Function Performance Considerations GROUPING Function Performance Considerations STRING_AGG() Function STDEV() and STDEVP() Functions Performance Considerations VAR() and VARP() Functions Ticker Analysis More Non-statistical Variance Even More Statistical Variance Summary Chapter 6: Finance Use Case: Ranking Functions Ranking Functions RANK() Function Example 1 Performance Considerations Example 2 Performance Considerations DENSE_RANK() Function Example 1 Performance Considerations Example 2 Performance Considerations NTILE() Function Example 1 Performance Considerations Example 2 Performance Considerations ROW_NUMBER() Function Performance Considerations The Data Gaps and Islands Problem Step 1: Create the First CTE Step 2: Set Up the Second CTE to Label Gaps Step 3: Set Up the Third CTE and Identify Start/Stop Dates of Gaps Step 4: Generate the Report Performance Considerations Islands Next Step 1: Create the First CTE Using LAG() and LEAD() Step 2: Create the Second CTE That Labels Islands and Gaps Step 3: Identify Island Start/Stop Dates Step 4: Create the Final Report Summary Chapter 7: Finance Use Case: Analytical Functions Analytical Functions CUME_DIST() Function Performance Considerations FIRST_VALUE() and LAST_VALUE() Functions Performance Considerations LAG() and LEAD() Functions LAG() Function Performance Considerations LEAD() Function Performance Considerations Memory-Optimized Strategy PERCENT_RANK() Function Performance Considerations PERCENTILE_CONT() and PERCENTILE_DISC() PERCENTILE_CONT() Performance Considerations PERCENTILE_DISC Function Performance Considerations Multi-memory-enhanced-table Strategy Performance Considerations Summary Chapter 8: Plant Use Case: Aggregate Functions Aggregate Functions Data Model Data Dictionaries Entity Data Dictionary Entity Attribute Data Dictionary Entity Relationship Data Dictionary: Equipment Failure Subject Area Entity Relationship Data Dictionary: Equipment Status History Entity Relationship Data Dictionary: Plant Expense COUNT() Function AVG() Function MIN() and MAX() Functions GROUPING() Function STRING_AGG() Function STDEV() and STDEVP() Functions VAR() and VARP() Functions Example 1: Rolling Variance Example 2: Variance by Quarter Example 3: Variance by Year Performance Considerations Memory-Optimized Table Approach Create a File and File Group Create the Memory-Optimized Table Load the Memory-Optimized Table Estimated Query Plan Seven-Million-Row Query: Performance Tuning Summary Chapter 9: Plant Use Case: Ranking Functions Ranking Functions RANK() Function Performance Considerations Performance Considerations Performance Considerations DENSE_RANK() Function Performance Considerations NTILE Function Performance Considerations ROW_NUMBER() Function Performance Considerations Summary Chapter 10: Plant Use Case: Analytical Functions Analytical Functions CUME_DIST() Function Performance Considerations FIRST_VALUE() and LAST_VALUE() Functions Performance Considerations LAG() Function Performance Considerations LEAD() Function Performance Considerations PERCENT_RANK() Function Performance Considerations PERCENTILE_CONT Function Performance Considerations PERCENTILE_DISC() Function Performance Considerations Our Usual Report Table Solution SQL Server Analysis Services Summary Chapter 11: Inventory Use Case: Aggregate Functions The Inventory Database The Inventory Data Warehouse Loading the Inventory Data Warehouse Aggregate Functions COUNT(), SUM(), MAX(), MIN(), and AVG() Functions Performance Considerations AVG() Function Performance Considerations Data Warehouse Query Performance Considerations STDEV() Function Performance Considerations Data Warehouse Query Performance Considerations VAR() Function Performance Considerations Enhancing the SSIS Package Summary Chapter 12: Inventory Use Case: Ranking Functions Ranking Functions RANK() Function Performance Considerations Querying the Data Warehouse DENSE_RANK() Function Performance Considerations NTILE() Function Performance Considerations ROW_NUMBER() Function Performance Considerations Create an SSRS Report Report Builder Mini Tutorial Create a Power BI Report Summary Chapter 13: Inventory Use Case: Analytical Functions Analytical Functions CUME_DIST() Function Performance Considerations FIRST_VALUE() and LAST_VALUE() Functions Performance Considerations LAG() Function Performance Considerations LEAD() Function Performance Considerations PERCENT_RANK() Function Performance Considerations PERCENTILE_CONT() Function Performance Considerations PERCENTILE_DISC() Function Performance Considerations Overall Performance Considerations Report Builder Examples Summary Chapter 14: Summary, Conclusions, and Next Steps Summary Our Journey About the Code About the Database Folders Data Used in the Examples The Toolkit SQL Server SSMS The Window Functions The Visual Studio Community License SSAS Projects SSIS Projects Power BI Web Scorecards, Dashboards, and Reports Microsoft Excel Spreadsheets SSAS Server SSRS Server and Website Report Builder Performance Analysis Tools Estimated Query Plans Live Query Plans DBCC IO and TIME Statistics STATISTICS PROFILE Where to Get the Tools SQL Server Developer Visual Studio Community SQL Server Data Tools SQL Server SSAS Project Support SQL Server SSIS Project Support SQL Server SSRS Project Support Report Builder Power BI Desktop Power BI Server Microsoft Excel SSMS Next Steps Thank You! Appendix A: Function Syntax, Descriptions The Window Frame Specifications ROWS and RANGE Default Behavior Scenario 1 Scenario 2 The Aggregate Functions COUNT() COUNT_BIG() SUM() MAX() MIN() AVG() GROUPING() STRING_AGG() STDEV() STDEVP() VAR() VARP() The Analytical Functions CUME_DIST() FIRST_VALUE() LAST_VALUE() LAG() LEAD() PERCENT_RANK() PERCENTILE_CONT() PERCENTILE_DISC() The Window/Ranking Functions RANK() DENSE_RANK() NTILE() ROW_NUMBER() Appendix B: Statistical Functions Standard Deviation Variance Normal Distribution Mean (Average) Median Mode Geometric Mean Harmonic Mean Weighted Mean (Average) Summary Index df-Capture.PNG