ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب SQL Server Analytical Toolkit: Using Windowing, Analytical, Ranking, and Aggregate Functions for Data and Statistical Analysis

دانلود کتاب SQL Server Analytical Toolkit: استفاده از توابع Windowing، Analytical، Ranking و Aggregate برای داده ها و تجزیه و تحلیل آماری

SQL Server Analytical Toolkit: Using Windowing, Analytical, Ranking, and Aggregate Functions for Data and Statistical Analysis

مشخصات کتاب

SQL Server Analytical Toolkit: Using Windowing, Analytical, Ranking, and Aggregate Functions for Data and Statistical Analysis

ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 9781484286661, 9781484286678 
ناشر: Apress 
سال نشر: 2023 
تعداد صفحات: 1069 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 96 Mb 

قیمت کتاب (تومان) : 45,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 4


در صورت تبدیل فایل کتاب SQL Server Analytical Toolkit: Using Windowing, Analytical, Ranking, and Aggregate Functions for Data and Statistical Analysis به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب SQL Server Analytical Toolkit: استفاده از توابع Windowing، Analytical، Ranking و Aggregate برای داده ها و تجزیه و تحلیل آماری نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Table of Contents
About the Author
About the Technical Reviewer
Introduction
Chapter 1: Partitions, Frames, and the OVER() Clause
	What Are Partitions and Window Frames?
	What Is an OVER() Clause?
	History of the OVER() Clause and Window Functions
	The Window Functions
	The OVER() Clause
	Syntax
	Partitions and Frames
	ROWS Frame Definition
	RANGE Frame Definition
	Example 1
	ROWS and RANGE Default Behavior
		Scenario 1
		Scenario 2
	ROWS and RANGE Window Frame Examples
		Data Set
		Example 2
		Example 3
		Example 4
		Example 5
	Summary
Chapter 2: Sales DW Use Case: Aggregate Functions
	Sales Data Warehouse
	Sales Data Warehouse Conceptual Model
	A Word About Performance Tuning
	Aggregate Functions
		COUNT(), MAX(), MIN(), AVG(), and SUM() Functions
		With OVER()
		GROUPING() Function
		GROUPING: Performance Tuning Considerations
		STRING_AGG Function
		STDEV() and STDEVP() Functions
		STDEV: Performance Tuning Considerations
		VAR() and VARP() Functions
	SQL Server 2022: Named Window Example
	Summary
Chapter 3: Sales Use Case: Analytical Functions
	Analytical Functions
		CUME_DIST() Function
		Performance Considerations
		PERCENT_RANK() Function
		Performance Considerations
		High-Performance Strategy
		LAST_VALUE() and FIRST_VALUE()
		Performance Considerations
		LAG() and LEAD()
		Performance Considerations
		PERCENTILE_CONT() and PERCENTILE_DISC()
		Performance Considerations
		Using a Report Table
	Summary
Chapter 4: Sales Use Case: Ranking/Window Functions
	Ranking/Window Functions
		RANK() vs. PERCENT_RANK()
		Performance Considerations
		RANK() vs. DENSE_RANK()
		Performance Considerations
		NTILE() Function Revisited
		Performance Considerations
		ROW_NUMBER() Function
		Performance Considerations
	Islands and Gaps Example
	Summary
Chapter 5: Finance Use Case: Aggregate Functions
	Aggregate Functions
		COUNT() and SUM() Functions
		Performance Considerations
		SUM() Function
		Performance Considerations
		MIN() and MAX() Functions
		Performance Considerations
		AVG() Function
		Performance Considerations
		GROUPING Function
		Performance Considerations
		STRING_AGG() Function
		STDEV() and STDEVP() Functions
		Performance Considerations
		VAR() and VARP() Functions
	Ticker Analysis
		More Non-statistical Variance
		Even More Statistical Variance
	Summary
Chapter 6: Finance Use Case: Ranking Functions
	Ranking Functions
		RANK() Function
			Example 1
			Performance Considerations
			Example 2
			Performance Considerations
		DENSE_RANK() Function
			Example 1
			Performance Considerations
			Example 2
			Performance Considerations
		NTILE() Function
			Example 1
			Performance Considerations
			Example 2
			Performance Considerations
		ROW_NUMBER() Function
			Performance Considerations
	The Data Gaps and Islands Problem
		Step 1: Create the First CTE
		Step 2: Set Up the Second CTE to Label Gaps
		Step 3: Set Up the Third CTE and Identify Start/Stop Dates of Gaps
		Step 4: Generate the Report
		Performance Considerations
	Islands Next
		Step 1: Create the First CTE Using LAG() and LEAD()
		Step 2: Create the Second CTE That Labels Islands and Gaps
		Step 3: Identify Island Start/Stop Dates
		Step 4: Create the Final Report
	Summary
Chapter 7: Finance Use Case: Analytical Functions
	Analytical Functions
		CUME_DIST() Function
		Performance Considerations
		FIRST_VALUE() and LAST_VALUE() Functions
		Performance Considerations
		LAG() and LEAD() Functions
		LAG() Function
		Performance Considerations
		LEAD() Function
		Performance Considerations
		Memory-Optimized Strategy
		PERCENT_RANK() Function
		Performance Considerations
		PERCENTILE_CONT() and PERCENTILE_DISC()
		PERCENTILE_CONT()
		Performance Considerations
		PERCENTILE_DISC Function
		Performance Considerations
		Multi-memory-enhanced-table Strategy
		Performance Considerations
	Summary
Chapter 8: Plant Use Case: Aggregate Functions
	Aggregate Functions
	Data Model
	Data Dictionaries
		Entity Data Dictionary
		Entity Attribute Data Dictionary
		Entity Relationship Data Dictionary: Equipment Failure Subject Area
		Entity Relationship Data Dictionary: Equipment Status History
		Entity Relationship Data Dictionary: Plant Expense
	COUNT() Function
		AVG() Function
		MIN() and MAX() Functions
		GROUPING() Function
		STRING_AGG() Function
		STDEV() and STDEVP() Functions
	VAR() and VARP() Functions
		Example 1: Rolling Variance
		Example 2: Variance by Quarter
		Example 3: Variance by Year
	Performance Considerations
		Memory-Optimized Table Approach
			Create a File and File Group
			Create the Memory-Optimized Table
			Load the Memory-Optimized Table
			Estimated Query Plan
	Seven-Million-Row Query: Performance Tuning
	Summary
Chapter 9: Plant Use Case: Ranking Functions
	Ranking Functions
		RANK() Function
		Performance Considerations
		Performance Considerations
		Performance Considerations
		DENSE_RANK() Function
		Performance Considerations
		NTILE Function
		Performance Considerations
		ROW_NUMBER() Function
		Performance Considerations
	Summary
Chapter 10: Plant Use Case: Analytical Functions
	Analytical Functions
		CUME_DIST() Function
		Performance Considerations
		FIRST_VALUE() and LAST_VALUE() Functions
		Performance Considerations
		LAG() Function
		Performance Considerations
		LEAD() Function
		Performance Considerations
		PERCENT_RANK() Function
		Performance Considerations
		PERCENTILE_CONT Function
		Performance Considerations
		PERCENTILE_DISC() Function
		Performance Considerations
		Our Usual Report Table Solution
	SQL Server Analysis Services
	Summary
Chapter 11: Inventory Use Case: Aggregate Functions
	The Inventory Database
	The Inventory Data Warehouse
	Loading the Inventory Data Warehouse
	Aggregate Functions
		COUNT(), SUM(), MAX(), MIN(), and AVG() Functions
		Performance Considerations
		AVG() Function
		Performance Considerations
		Data Warehouse Query
		Performance Considerations
		STDEV() Function
		Performance Considerations
		Data Warehouse Query
		Performance Considerations
		VAR() Function
		Performance Considerations
	Enhancing the SSIS Package
	Summary
Chapter 12: Inventory Use Case: Ranking Functions
	Ranking Functions
		RANK() Function
		Performance Considerations
		Querying the Data Warehouse
		DENSE_RANK() Function
		Performance Considerations
		NTILE() Function
		Performance Considerations
		ROW_NUMBER() Function
		Performance Considerations
	Create an SSRS Report
		Report Builder Mini Tutorial
		Create a Power BI Report
	Summary
Chapter 13: Inventory Use Case: Analytical Functions
	Analytical Functions
		CUME_DIST() Function
		Performance Considerations
		FIRST_VALUE() and LAST_VALUE() Functions
		Performance Considerations
		LAG() Function
		Performance Considerations
		LEAD() Function
		Performance Considerations
		PERCENT_RANK() Function
		Performance Considerations
		PERCENTILE_CONT() Function
		Performance Considerations
		PERCENTILE_DISC() Function
		Performance Considerations
		Overall Performance Considerations
	Report Builder Examples
	Summary
Chapter 14: Summary, Conclusions, and Next Steps
	Summary
	Our Journey
	About the Code
	About the Database Folders
	Data Used in the Examples
	The Toolkit
	SQL Server
	SSMS
	The Window Functions
	The Visual Studio Community License
		SSAS Projects
		SSIS Projects
	Power BI Web Scorecards, Dashboards, and Reports
	Microsoft Excel Spreadsheets
	SSAS Server
	SSRS Server and Website
	Report Builder
	Performance Analysis Tools
		Estimated Query Plans
		Live Query Plans
		DBCC
		IO and TIME Statistics
		STATISTICS PROFILE
	Where to Get the Tools
		SQL Server Developer
		Visual Studio Community
		SQL Server Data Tools
		SQL Server SSAS Project Support
		SQL Server SSIS Project Support
		SQL Server SSRS Project Support
		Report Builder
		Power BI Desktop
		Power BI Server
		Microsoft Excel
		SSMS
	Next Steps
	Thank You!
Appendix A: Function Syntax, Descriptions
	The Window Frame Specifications
	ROWS and RANGE Default Behavior
		Scenario 1
		Scenario 2
	The Aggregate Functions
		COUNT()
		COUNT_BIG()
		SUM()
		MAX()
		MIN()
		AVG()
		GROUPING()
		STRING_AGG()
		STDEV()
		STDEVP()
		VAR()
		VARP()
	The Analytical Functions
		CUME_DIST()
		FIRST_VALUE()
		LAST_VALUE()
		LAG()
		LEAD()
		PERCENT_RANK()
		PERCENTILE_CONT()
		PERCENTILE_DISC()
	The Window/Ranking Functions
		RANK()
		DENSE_RANK()
		NTILE()
		ROW_NUMBER()
Appendix B: Statistical Functions
	Standard Deviation
	Variance
	Normal Distribution
	Mean (Average)
	Median
	Mode
	Geometric Mean
	Harmonic Mean
	Weighted Mean (Average)
	Summary
Index
df-Capture.PNG




نظرات کاربران