دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [Ninth ed.]
نویسندگان: Cliff T. Ragsdale
سری:
ISBN (شابک) : 9780357132098, 0357132092
ناشر:
سال نشر: 2022
تعداد صفحات: [914]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 135 Mb
در صورت تبدیل فایل کتاب Spreadsheet modeling and decision analysis : a practical introduction to business analytics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مدل سازی صفحه گسترده و تجزیه و تحلیل تصمیم: مقدمه ای عملی برای تجزیه و تحلیل کسب و کار نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Preface Brief Contents Contents Chapter 1: Introduction to Modeling and Decision Analysis 1-0 Introduction 1-1 The Modeling Approach to Decision Making 1-2 Characteristics and Benefits of Modeling 1-3 Mathematical Models 1-4 Categories of Mathematical Models 1-5 Business Analytics and the Problem-Solving Process 1-6 Anchoring and Framing Effects 1-7 Good Decisions vs. Good Outcomes 1-8 Summary 1-9 References Questions and Problems Case 1-1 Patrick's Paradox Chapter 2: Introduction to Optimization and Linear Programming 2-0 Introduction 2-1 Applications of Mathematical Optimization 2-2 Characteristics of Optimization Problems 2-3 Expressing Optimization Problems Mathematically 2-4 Mathematical Programming Techniques 2-5 An Example LP Problem 2-6 Formulating LP Models 2-7 Summary of the LP Model for the Example Problem 2-8 The General Form of an LP Model 2-9 Solving LP Problems: An Intuitive Approach 2-10 Solving LP Problems: A Graphical Approach 2-11 Special Conditions in LP Models 2-12 Summary 2-13 References Questions and Problems Case 2-1 For the Lines They Are A-Changin' (with Apologies to Bob Dylan) Chapter 3: Modeling and Solving LP Problems in a Spreadsheet 3-0 Introduction 3-1 Spreadsheet Solvers 3-2 Solving LP Problems in a Spreadsheet 3-3 The Steps in Implementing an LP Model in a Spreadsheet 3-4 A Spreadsheet Model for the Blue Ridge Hot Tubs Problem 3-5 How Solver Views the Model 3-6 Using Analytic Solver 3-7 Using Excel's Built-in Solver 3-8 Goals and Guidelines for Spreadsheet Design 3-9 Make vs. Buy Decisions 3-10 An Investment Problem 3-11 A Transportation Problem 3-12 A Blending Problem 3-13 A Production and Inventory Planning Problem 3-14 A Multiperiod Cash Flow Problem 3-15 Data Envelopment Analysis 3-16 Summary 3-17 References Questions and Problems Case 3-1 Putting the Link in the Supply Chain Case 3-2 Foreign Exchange Trading at Baldwin Enterprises Case 3-3 The Wolverine Retirement Fund Case 3-4 Saving the Manatees Chapter 4: Sensitivity Analysis and the Simplex Method 4-0 Introduction 4-1 The Purpose of Sensitivity Analysis 4-2 Approaches to Sensitivity Analysis 4-3 An Example Problem 4-4 The Answer Report 4-5 The Sensitivity Report 4-6 Ad Hoc Sensitivity Analysis 4-7 Robust Optimization 4-8 The Simplex Method 4-9 Summary 4-10 References Questions and Problems Case 4-1 A Nut Case Case 4-2 Parket Sisters Case 4-3 Kamm Industries Chapter 5: Network Modeling 5-0 Introduction 5-1 The Transshipment Problem 5-2 The Shortest Path Problem 5-3 The Equipment Replacement Problem 5-4 Transportation/Assignment Problems 5-5 Generalized Network Flow Problems 5-6 Maximal Flow Problems 5-7 Special Modeling Considerations 5-8 Minimal Spanning Tree Problems 5-9 Summary 5-10 References Questions and Problems Case 5-1 Hamilton & Jovanovich Case 5-2 Old Dominion Energy Case 5-3 US Express Case 5-4 The Major Electric Corporation Chapter 6: Integer Linear Programming 6-0 Introduction 6-1 Integrality Conditions 6-2 Relaxation 6-3 Solving the Relaxed Problem 6-4 Bounds 6-5 Rounding 6-6 Stopping Rules 6-7 Solving ILP Problems Using Solver 6-8 Other ILP Problems 6-9 An Employee Scheduling Problem 6-10 Binary Variables 6-11 A Capital Budgeting Problem 6-12 Binary Variables and Logical Conditions 6-13 The Line Balancing Problem 6-14 The Fixed-Charge Problem 6-15 Minimum Order/Purchase Size 6-16 Quantity Discounts 6-17 A Contract Award Problem 6-18 The Branch-and-Bound Algorithm (Optional) 6-19 Summary 6-20 References Questions and Problems Case 6-1 Optimizing a Timber Harvest Case 6-2 Power Dispatching at Old Dominion Case 6-3 The MasterDebt Lockbox Problem Case 6-4 Removing Snow in Montreal Chapter 7: Goal Programming and Multiple Objective Optimization 7-0 Introduction 7-1 Goal Programming 7-2 A Goal Programming Example 7-3 Comments about Goal Programming 7-4 Multiple Objective Optimization 7-5 An MOLP Example 7-6 Comments on MOLP 7-7 Summary 7-8 References Questions and Problems Case 7-1 Removing Snow in Montreal Case 7-2 Planning Diets for the Food Stamp Program Case 7-3 Sales Territory Planning at Caro-Life Chapter 8: Nonlinear Programming and Evolutionary Optimization 8-0 Introduction 8-1 The Nature of NLP Problems 8-2 Solution Strategies for NLP Problems 8-3 Local vs. Global Optimal Solutions 8-4 Economic Order Quantity Models 8-5 Location Problems 8-6 Nonlinear Network Flow Problem 8-7 Project Selection Problems 8-8 Optimizing Existing Financial Spreadsheet Models 8-9 The Portfolio Selection Problem 8-10 Sensitivity Analysis 8-11 Solver Options for Solving NLPs 8-12 Evolutionary Algorithms 8-13 Forming Fair Teams 8-14 The Traveling Salesperson Problem 8-15 Summary 8-16 References Questions and Problems Case 8-1 Tour de Europe Case 8-2 Electing the Next President Case 8-3 Making Windows at Wella Case 8-4 Newspaper Advertising Insert Scheduling Chapter 9: Regression Analysis 9-0 Introduction 9-1 An Example 9-2 Regression Models 9-3 Simple Linear Regression Analysis 9-4 Defining "Best Fit" 9-5 Solving the Problem Using Solver 9-6 Solving the Problem Using the Regression Tool 9-7 Evaluating the Fit 9-8 The R2 Statistic 9-9 Making Predictions 9-10 Statistical Tests for Population Parameters 9-11 Introduction to Multiple Regression 9-12 A Multiple Regression Example 9-13 Selecting the Model 9-14 Making Predictions 9-15 Other Model Selection Issues 9-16 Binary Independent Variables 9-17 Statistical Tests for the Population Parameters 9-18 Polynomial Regression 9-19 Summary 9-20 References Questions and Problems Case 9-1 Diamonds Are Forever Case 9-2 Fiasco in Florida Case 9-3 The Georgia Public Service Commission Chapter 10: Data Mining 10-0 Introduction 10-1 Data Mining Overview 10-2 Classification 10-3 Classification Data Partitioning 10-4 Discriminant Analysis 10-5 Logistic Regression 10-6 k-Nearest Neighbor 10-7 Classification Trees 10-8 Neural Networks 10-9 Naive Bayes 10-10 Comments on Classification 10-11 Prediction 10-12 Association Rules (Affinity Analysis) 10-13 Cluster Analysis 10-14 Time Series 10-15 Summary 10-16 References Questions and Problems Case 10-1 Detecting Management Fraud Chapter 11: Time Series Forecasting 11-0 Introduction 11-1 Time Series Methods 11-2 Measuring Accuracy 11-3 Stationary Models 11-4 Moving Averages 11-5 Weighted Moving Averages 11-6 Exponential Smoothing 11-7 Seasonality 11-8 Stationary Data with Additive Seasonal Effects 11-9 Stationary Data with Multiplicative Seasonal Effects 11-10 Trend Models 11-11 Double Moving Average 11-12 Double Exponential Smoothing (Holt's Method) 11-13 Holt-Winter's Method for Additive Seasonal Effects 11-14 Holt-Winter's Method for Multiplicative Seasonal Effects 11-15 Modeling Time Series Trends Using Regression 11-16 Linear Trend Model 11-17 Quadratic Trend Model 11-18 Modeling Seasonality with Regression Models 11-19 Adjusting Trend Predictions with Seasonal Indices 11-20 Seasonal Regression Models 11-21 Combining Forecasts 11-22 Summary 11-23 References Questions and Problems Case 11-1 PB Chemical Corporation Case 11-2 Forecasting COLAs Case 11-3 Strategic Planning at Fysco Foods Chapter 12: Introduction to Simulation Using Analytic Solver 12-0 Introduction 12-1 Random Variables and Risk 12-2 Why Analyze Risk? 12-3 Methods of Risk Analysis 12-4 A Corporate Health Insurance Example 12-5 Spreadsheet Simulation Using Analytic Solver 12-6 Random Number Generators 12-7 Preparing the Model for Simulation 12-8 Running the Simulation 12-9 Data Analysis 12-10 The Uncertainty of Sampling 12-11 Interactive Simulation 12-12 The Benefits of Simulation 12-13 Additional Uses of Simulation 12-14 A Reservation Management Example 12-15 An Inventory Control Example 12-16 A Project Selection Example 12-17 A Portfolio Optimization Example 12-18 Summary 12-19 References Questions and Problems Case 12-1 Live Well, Die Broke Case 12-2 Death and Taxes Case 12-3 The Sound's Alive Company Phase One: Projecting Profits Phase Two: Bringing Competition into the Model Phase Three: Bringing Uncertainty into the Model Case 12-4 The Foxridge Investment Group Chapter 13: Queuing Theory 13-0 Introduction 13-1 The Purpose of Queuing Models 13-2 Queuing System Configurations 13-3 Characteristics of Queuing Systems 13-4 Kendall Notation 13-5 Queuing Models 13-6 The M/M/s Model 13-7 The M/M/s Model with Finite Queue Length 13-8 The M/M/s Model with Finite Population 13-9 The M/G/1 Model 13-10 The M/D/1 Model 13-11 Simulating Queues and the Steady-State Assumption 13-12 Summary 13-13 References Questions and Problems Case 13-1 May the (Police) Force Be with You Case 13-2 Call Center Staffing at Vacations Inc. Case 13-3 Bullseye Department Store Chapter 14: Decision Analysis 14-0 Introduction 14-1 Good Decisions vs. Good Outcomes 14-2 Characteristics of Decision Problems 14-3 An Example 14-4 The Payoff Matrix 14-5 Decision Rules 14-6 Nonprobabilistic Methods 14-7 Probabilistic Methods 14-8 The Expected Value of Perfect Information 14-9 Decision Trees 14-10 Creating Decision Trees with Analytic Solver 14-11 Multistage Decision Problems 14-12 Sensitivity Analysis 14-13 Using Sample Information in Decision Making 14-14 Computing Conditional Probabilities 14-15 Utility Theory 14-16 Multicriteria Decision Making 14-17 The Multicriteria Scoring Model 14-18 The Analytic Hierarchy Process 14-19 Summary 14-20 References Questions and Problems Case 14-1 Prezcott Pharma Case 14-2 Hang on or Give Up? Case 14-3 Should Larry Junior Go to Court or Settle? Case 14-4 The Spreadsheet Wars Chapter 15: Project Management 15-0 Introduction 15-1 An Example 15-2 Creating the Project Network 15-3 CPM: An Overview 15-4 The Forward Pass 15-5 The Backward Pass 15-6 Determining the Critical Path 15-7 Project Management Using Spreadsheets 15-8 Gantt Charts 15-9 Project Crashing 15-10 Pert: An Overview 15-11 Simulating Project Networks 15-12 Microsoft Project 15-13 Summary 15-14 References Questions and Problems Case 15-1 Project Management at a Crossroad Case 15-2 The World Trade Center Clean-Up Case 15-3 The Imagination Toy Corporation Index