ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Spreadsheet modeling and decision analysis : a practical introduction to business analytics

دانلود کتاب مدل سازی صفحه گسترده و تجزیه و تحلیل تصمیم: مقدمه ای عملی برای تجزیه و تحلیل کسب و کار

Spreadsheet modeling and decision analysis : a practical introduction to business analytics

مشخصات کتاب

Spreadsheet modeling and decision analysis : a practical introduction to business analytics

ویرایش: [Ninth ed.] 
نویسندگان:   
سری:  
ISBN (شابک) : 9780357132098, 0357132092 
ناشر:  
سال نشر: 2022 
تعداد صفحات: [914] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 135 Mb 

قیمت کتاب (تومان) : 33,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 1


در صورت تبدیل فایل کتاب Spreadsheet modeling and decision analysis : a practical introduction to business analytics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب مدل سازی صفحه گسترده و تجزیه و تحلیل تصمیم: مقدمه ای عملی برای تجزیه و تحلیل کسب و کار نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Cover
Preface
Brief Contents
Contents
Chapter 1: Introduction to Modeling and Decision Analysis
	1-0 Introduction
	1-1 The Modeling Approach to Decision Making
	1-2 Characteristics and Benefits of Modeling
	1-3 Mathematical Models
	1-4 Categories of Mathematical Models
	1-5 Business Analytics and the Problem-Solving Process
	1-6 Anchoring and Framing Effects
	1-7 Good Decisions vs. Good Outcomes
	1-8 Summary
	1-9 References
	Questions and Problems
	Case 1-1 Patrick's Paradox
Chapter 2: Introduction to Optimization and Linear Programming
	2-0 Introduction
	2-1 Applications of Mathematical Optimization
	2-2 Characteristics of Optimization Problems
	2-3 Expressing Optimization Problems Mathematically
	2-4 Mathematical Programming Techniques
	2-5 An Example LP Problem
	2-6 Formulating LP Models
	2-7 Summary of the LP Model for the Example Problem
	2-8 The General Form of an LP Model
	2-9 Solving LP Problems: An Intuitive Approach
	2-10 Solving LP Problems: A Graphical Approach
	2-11 Special Conditions in LP Models
	2-12 Summary
	2-13 References
	Questions and Problems
	Case 2-1 For the Lines They Are A-Changin' (with Apologies to Bob Dylan)
Chapter 3: Modeling and Solving LP Problems in a Spreadsheet
	3-0 Introduction
	3-1 Spreadsheet Solvers
	3-2 Solving LP Problems in a Spreadsheet
	3-3 The Steps in Implementing an LP Model in a Spreadsheet
	3-4 A Spreadsheet Model for the Blue Ridge Hot Tubs Problem
	3-5 How Solver Views the Model
	3-6 Using Analytic Solver
	3-7 Using Excel's Built-in Solver
	3-8 Goals and Guidelines for Spreadsheet Design
	3-9 Make vs. Buy Decisions
	3-10 An Investment Problem
	3-11 A Transportation Problem
	3-12 A Blending Problem
	3-13 A Production and Inventory Planning Problem
	3-14 A Multiperiod Cash Flow Problem
	3-15 Data Envelopment Analysis
	3-16 Summary
	3-17 References
	Questions and Problems
	Case 3-1 Putting the Link in the Supply Chain
	Case 3-2 Foreign Exchange Trading at Baldwin Enterprises
	Case 3-3 The Wolverine Retirement Fund
	Case 3-4 Saving the Manatees
Chapter 4: Sensitivity Analysis and the Simplex Method
	4-0 Introduction
	4-1 The Purpose of Sensitivity Analysis
	4-2 Approaches to Sensitivity Analysis
	4-3 An Example Problem
	4-4 The Answer Report
	4-5 The Sensitivity Report
	4-6 Ad Hoc Sensitivity Analysis
	4-7 Robust Optimization
	4-8 The Simplex Method
	4-9 Summary
	4-10 References
	Questions and Problems
	Case 4-1 A Nut Case
	Case 4-2 Parket Sisters
	Case 4-3 Kamm Industries
Chapter 5: Network Modeling
	5-0 Introduction
	5-1 The Transshipment Problem
	5-2 The Shortest Path Problem
	5-3 The Equipment Replacement Problem
	5-4 Transportation/Assignment Problems
	5-5 Generalized Network Flow Problems
	5-6 Maximal Flow Problems
	5-7 Special Modeling Considerations
	5-8 Minimal Spanning Tree Problems
	5-9 Summary
	5-10 References
	Questions and Problems
	Case 5-1 Hamilton & Jovanovich
	Case 5-2 Old Dominion Energy
	Case 5-3 US Express
	Case 5-4 The Major Electric Corporation
Chapter 6: Integer Linear Programming
	6-0 Introduction
	6-1 Integrality Conditions
	6-2 Relaxation
	6-3 Solving the Relaxed Problem
	6-4 Bounds
	6-5 Rounding
	6-6 Stopping Rules
	6-7 Solving ILP Problems Using Solver
	6-8 Other ILP Problems
	6-9 An Employee Scheduling Problem
	6-10 Binary Variables
	6-11 A Capital Budgeting Problem
	6-12 Binary Variables and Logical Conditions
	6-13 The Line Balancing Problem
	6-14 The Fixed-Charge Problem
	6-15 Minimum Order/Purchase Size
	6-16 Quantity Discounts
	6-17 A Contract Award Problem
	6-18 The Branch-and-Bound Algorithm (Optional)
	6-19 Summary
	6-20 References
	Questions and Problems
	Case 6-1 Optimizing a Timber Harvest
	Case 6-2 Power Dispatching at Old Dominion
	Case 6-3 The MasterDebt Lockbox Problem
	Case 6-4 Removing Snow in Montreal
Chapter 7: Goal Programming and Multiple Objective Optimization
	7-0 Introduction
	7-1 Goal Programming
	7-2 A Goal Programming Example
	7-3 Comments about Goal Programming
	7-4 Multiple Objective Optimization
	7-5 An MOLP Example
	7-6 Comments on MOLP
	7-7 Summary
	7-8 References
	Questions and Problems
	Case 7-1 Removing Snow in Montreal
	Case 7-2 Planning Diets for the Food Stamp Program
	Case 7-3 Sales Territory Planning at Caro-Life
Chapter 8: Nonlinear Programming and Evolutionary Optimization
	8-0 Introduction
	8-1 The Nature of NLP Problems
	8-2 Solution Strategies for NLP Problems
	8-3 Local vs. Global Optimal Solutions
	8-4 Economic Order Quantity Models
	8-5 Location Problems
	8-6 Nonlinear Network Flow Problem
	8-7 Project Selection Problems
	8-8 Optimizing Existing Financial Spreadsheet Models
	8-9 The Portfolio Selection Problem
	8-10 Sensitivity Analysis
	8-11 Solver Options for Solving NLPs
	8-12 Evolutionary Algorithms
	8-13 Forming Fair Teams
	8-14 The Traveling Salesperson Problem
	8-15 Summary
	8-16 References
	Questions and Problems
	Case 8-1 Tour de Europe
	Case 8-2 Electing the Next President
	Case 8-3 Making Windows at Wella
	Case 8-4 Newspaper Advertising Insert Scheduling
Chapter 9: Regression Analysis
	9-0 Introduction
	9-1 An Example
	9-2 Regression Models
	9-3 Simple Linear Regression Analysis
	9-4 Defining "Best Fit"
	9-5 Solving the Problem Using Solver
	9-6 Solving the Problem Using the Regression Tool
	9-7 Evaluating the Fit
	9-8 The R2 Statistic
	9-9 Making Predictions
	9-10 Statistical Tests for Population Parameters
	9-11 Introduction to Multiple Regression
	9-12 A Multiple Regression Example
	9-13 Selecting the Model
	9-14 Making Predictions
	9-15 Other Model Selection Issues
	9-16 Binary Independent Variables
	9-17 Statistical Tests for the Population Parameters
	9-18 Polynomial Regression
	9-19 Summary
	9-20 References
	Questions and Problems
	Case 9-1 Diamonds Are Forever
	Case 9-2 Fiasco in Florida
	Case 9-3 The Georgia Public Service Commission
Chapter 10: Data Mining
	10-0 Introduction
	10-1 Data Mining Overview
	10-2 Classification
	10-3 Classification Data Partitioning
	10-4 Discriminant Analysis
	10-5 Logistic Regression
	10-6 k-Nearest Neighbor
	10-7 Classification Trees
	10-8 Neural Networks
	10-9 Naive Bayes
	10-10 Comments on Classification
	10-11 Prediction
	10-12 Association Rules (Affinity Analysis)
	10-13 Cluster Analysis
	10-14 Time Series
	10-15 Summary
	10-16 References
	Questions and Problems
	Case 10-1 Detecting Management Fraud
Chapter 11: Time Series Forecasting
	11-0 Introduction
	11-1 Time Series Methods
	11-2 Measuring Accuracy
	11-3 Stationary Models
	11-4 Moving Averages
	11-5 Weighted Moving Averages
	11-6 Exponential Smoothing
	11-7 Seasonality
	11-8 Stationary Data with Additive Seasonal Effects
	11-9 Stationary Data with Multiplicative Seasonal Effects
	11-10 Trend Models
	11-11 Double Moving Average
	11-12 Double Exponential Smoothing (Holt's Method)
	11-13 Holt-Winter's Method for Additive Seasonal Effects
	11-14 Holt-Winter's Method for Multiplicative Seasonal Effects
	11-15 Modeling Time Series Trends Using Regression
	11-16 Linear Trend Model
	11-17 Quadratic Trend Model
	11-18 Modeling Seasonality with Regression Models
	11-19 Adjusting Trend Predictions with Seasonal Indices
	11-20 Seasonal Regression Models
	11-21 Combining Forecasts
	11-22 Summary
	11-23 References
	Questions and Problems
	Case 11-1 PB Chemical Corporation
	Case 11-2 Forecasting COLAs
	Case 11-3 Strategic Planning at Fysco Foods
Chapter 12: Introduction to Simulation Using Analytic Solver
	12-0 Introduction
	12-1 Random Variables and Risk
	12-2 Why Analyze Risk?
	12-3 Methods of Risk Analysis
	12-4 A Corporate Health Insurance Example
	12-5 Spreadsheet Simulation Using Analytic Solver
	12-6 Random Number Generators
	12-7 Preparing the Model for Simulation
	12-8 Running the Simulation
	12-9 Data Analysis
	12-10 The Uncertainty of Sampling
	12-11 Interactive Simulation
	12-12 The Benefits of Simulation
	12-13 Additional Uses of Simulation
	12-14 A Reservation Management Example
	12-15 An Inventory Control Example
	12-16 A Project Selection Example
	12-17 A Portfolio Optimization Example
	12-18 Summary
	12-19 References
	Questions and Problems
	Case 12-1 Live Well, Die Broke
	Case 12-2 Death and Taxes
	Case 12-3 The Sound's Alive Company
	Phase One: Projecting Profits
	Phase Two: Bringing Competition into the Model
	Phase Three: Bringing Uncertainty into the Model
	Case 12-4 The Foxridge Investment Group
Chapter 13: Queuing Theory
	13-0 Introduction
	13-1 The Purpose of Queuing Models
	13-2 Queuing System Configurations
	13-3 Characteristics of Queuing Systems
	13-4 Kendall Notation
	13-5 Queuing Models
	13-6 The M/M/s Model
	13-7 The M/M/s Model with Finite Queue Length
	13-8 The M/M/s Model with Finite Population
	13-9 The M/G/1 Model
	13-10 The M/D/1 Model
	13-11 Simulating Queues and the Steady-State Assumption
	13-12 Summary
	13-13 References
	Questions and Problems
	Case 13-1 May the (Police) Force Be with You
	Case 13-2 Call Center Staffing at Vacations Inc.
	Case 13-3 Bullseye Department Store
Chapter 14: Decision Analysis
	14-0 Introduction
	14-1 Good Decisions vs. Good Outcomes
	14-2 Characteristics of Decision Problems
	14-3 An Example
	14-4 The Payoff Matrix
	14-5 Decision Rules
	14-6 Nonprobabilistic Methods
	14-7 Probabilistic Methods
	14-8 The Expected Value of Perfect Information
	14-9 Decision Trees
	14-10 Creating Decision Trees with Analytic Solver
	14-11 Multistage Decision Problems
	14-12 Sensitivity Analysis
	14-13 Using Sample Information in Decision Making
	14-14 Computing Conditional Probabilities
	14-15 Utility Theory
	14-16 Multicriteria Decision Making
	14-17 The Multicriteria Scoring Model
	14-18 The Analytic Hierarchy Process
	14-19 Summary
	14-20 References
	Questions and Problems
	Case 14-1 Prezcott Pharma
	Case 14-2 Hang on or Give Up?
	Case 14-3 Should Larry Junior Go to Court or Settle?
	Case 14-4 The Spreadsheet Wars
Chapter 15: Project Management
	15-0 Introduction
	15-1 An Example
	15-2 Creating the Project Network
	15-3 CPM: An Overview
	15-4 The Forward Pass
	15-5 The Backward Pass
	15-6 Determining the Critical Path
	15-7 Project Management Using Spreadsheets
	15-8 Gantt Charts
	15-9 Project Crashing
	15-10 Pert: An Overview
	15-11 Simulating Project Networks
	15-12 Microsoft Project
	15-13 Summary
	15-14 References
	Questions and Problems
	Case 15-1 Project Management at a Crossroad
	Case 15-2 The World Trade Center Clean-Up
	Case 15-3 The Imagination Toy Corporation
Index




نظرات کاربران