دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Jack K. Holmes
سری: GNSS Technology and Applications
ISBN (شابک) : 1596930837, 9781596930834
ناشر: Artech House
سال نشر: 2007
تعداد صفحات: 875
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 12 مگابایت
در صورت تبدیل فایل کتاب Spread Spectrum Systems for GNSS and Wireless Communications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب Spectrum Systems را برای GNSS و ارتباطات بی سیم گسترش دهید نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
برای درمان مدرن ارتباطات طیف گسترده (SS)، از جمله توالی مستقیم و پرش فرکانس، به این منبع پیشرفته نگاه کنید. این کتاب به شما کمک می کند تا عملکرد سیستم های SS را تحت تأثیر پارازیت و با و بدون کدنویسی درک کنید. جزئیات مربوط به همگام سازی سیستم های SS، از جمله اکتساب اولیه و ردیابی را می یابید. این کتاب از دست دادن همبستگی را مورد بحث قرار می دهد تا به شما کمک کند تأثیر فیلترها را بر روند همبستگی تعیین کنید. علاوه بر این، برای اولین بار در هر کتابی، جزئیاتی در مورد دریافت کد و ردیابی کد با فیلتر کانال پیدا می کنید.
Look to this cutting-edge resource for a modern treatment of spread spectrum (SS) communications, including direct sequence and frequency hopping. The book helps you understand the performance of SS systems under the influence of jamming and with and without coding. You find details on the synchronization of SS systems, including initial acquisition and tracking. The book discusses correlation loss to help you determine the impact of filters on the correlation process. Moreover, for the first time in any book, you find details on code acquisition and code tracking with channel filtering.
Contents......Page 7
1.0 INTRODUCTION......Page 19
1.1 A VERY BRIEF HISTORY OF SPREAD SPECTRUM COMMUNICATIONS......Page 20
1.2 A DIGITAL SPREAD SPECTRUM COMMUNICATION SYSTEMS MODEL......Page 21
1.3.1 Narrowband Processes Via the Complex Envelope......Page 22
1.3.2 Narrowband Signals Through Narrowband Systems......Page 23
1.4 DIRECT SEQUENCE SPREAD SPECTRUM SYSTEMS......Page 25
1.4.1 Direct Sequence Spreading with Binary Phase Shift Keying (BPSK)......Page 26
1.4.2 Quadriphase Direct Sequence Spread Spectrum Systems......Page 41
1.5 FREQUENCY-HOPPED SPREAD SPECTRUM SYSTEMS......Page 48
1.5.1 Noncoherent Slow Frequency-Hopped Systems with MFSK Data Modulation......Page 51
1.5.2 Noncoherent Fast Frequency-Hopped Systems with MFSK Data Modulation......Page 52
1.5.3 Noncoherent Slow Frequency-Hopped Signals with DPSK Data Modulation......Page 54
1.5.4 Noncoherent Slow Frequency-Hopped Signals with BPSK Data Modulation......Page 57
1.6.1 Hybrid DS with Slow Frequency Hopping with BPSK Data......Page 58
1.6.2 Hybrid OQPSK DS with SFH with BPSK Data......Page 59
1.7 TIME HOPPING SPREAD SPECTRUM SIGNALS......Page 60
1.8 AN INTRODUCTION TO OFDM......Page 62
1.8.1 OFDM Communication System Implemented Via the FFT......Page 63
1.8.3 OFDM Power Spectral Density......Page 64
1.9.1 A Brief Early History of UWB Communications......Page 65
1.9.2 Description of UWB Signals......Page 66
1.9.4 Impact of the Transmit Antenna on the Transmitted Signal......Page 71
1.9.7 Applications of UWB......Page 74
1.11 LOW PROBABILITY OF INTERCEPTION......Page 75
References......Page 76
Problems......Page 77
2.1 FINITE FIELD ARITHMETIC......Page 81
2.1.1 Polynomial Arithmetic......Page 83
2.2 SHIFT REGISTER SEQUENCES......Page 84
2.2.1 Equivalence of the Fibonacci and Galois Forms of a Linear SRG......Page 88
2.3.1 The Shift Register Matrix......Page 90
2.3.2 The Characteristic Equation and Characteristic Polynomial......Page 91
2.4 THE GENERATING FUNCTION......Page 93
2.5 THE CORRELATION FUNCTION OF SEQUENCES......Page 96
2.5.1 Periodic Correlation Functions for Sequences......Page 99
2.5.2 Aperiodic Correlation Functions for Sequences......Page 101
2.6.1 Binary Maximal Length Sequences......Page 102
2.6.2 Gold Codes......Page 112
2.6.3 Gold-Like Sequences and Dual BCH Sequences......Page 121
2.6.4 Kasami Sequences......Page 122
2.6.6 Comparison of CDMA Code Performance......Page 124
2.7 SEQUENCES WITH GOOD APERIODIC CORRELATION......Page 125
2.7.1 Barker and Williard Sequences......Page 126
2.7.3 Partial Period Correlation for m-Sequences......Page 127
2.7.4 Frequency-Hopping Multiple Access Code Generators......Page 129
References......Page 132
Problems......Page 134
3.0 INTRODUCTION......Page 139
3.1 JAMMER TYPES......Page 141
3.2.1 DS/PSK in Broadband Noise Jamming......Page 143
3.2.2 SFH/DPSK in Broadband Noise Jamming......Page 147
3.2.3 SFH/PSK in Broadband Noise Jamming......Page 150
3.2.4 SFH/MFSK in Broadband Noise Jamming......Page 151
3.2.5 FFH/BFSK in Broadband Noise Jamming......Page 155
3.2.6 Hybrid DS-SFH SS Modulation in Broadband Noise Jamming......Page 156
3.3.1 DS/PSK in Partial Band Noise Jamming......Page 158
3.3.2 SFH/DPSK Systems in Partial Band Noise Jamming......Page 162
3.3.3 SFH/PSK BER in Partial Band Noise Jamming......Page 164
3.3.4 SFH/MFSK in Partial Band Noise Jamming......Page 166
3.3.5 FFH/MFSK in Partial Band Noise Jamming......Page 169
3.3.6 Hybrid DS-SFH/MFSK in Partial Band Noise Jamming......Page 172
3.4.1 Bit Error Rate Performance for DS/PSK in Pulsed Jamming......Page 175
3.4.2 Performance of SFH/MFSK in Pulsed Jamming......Page 177
3.4.4 Performance of Hybrid DS-SFH/MFSK in Pulsed Jamming......Page 178
3.5.1 Bit Error Rate Performance for DS(BPSK)/BPSK in Tone Jamming......Page 179
3.5.2 Bit Error Rate Performance for DS(QPSK)/BPSK in Tone Jamming......Page 183
3.5.3 Bit Error Rate Performance for DS(MSK)/BPSK in Tone Jamming......Page 186
3.6.1 Multitone Jamming Bit Error Rate Performance for SFH/MFSK......Page 191
3.6.2 Multitone Jamming Bit Error Rate Performance for SFH/DPSK......Page 193
3.7 DEGRADATION DUE TO INTERFERENCE OR JAMMING IN DS SYSTEMS......Page 196
3.7.1 Equivalent Noise Spectral Density for DS(BPSK)/BPSK Systems......Page 197
3.7.2 Carrier to Equivalent Noise Spectral Density Ratio for DS(BPSK)/BPSK......Page 199
3.7.3 Equivalent Noise Spectral Density Degradation for DS(BPSK)/BPSK Systems......Page 201
3.7.4 Degradation to NRZ Signals Due to Narrowband Jammers for DS(BPSK)/BPSK Signals......Page 203
References......Page 204
Problems......Page 205
4.0 INTRODUCTION......Page 209
4.1.1 Block Periodic Interleaving......Page 210
4.1.2 Convolutional Interleaving......Page 212
4.2.1 Linear Block Coding Concepts......Page 213
4.2.2 Rule for Optimum Decoding with No Jammer Side Information......Page 226
4.2.3 Rule for Optimum Decoding with Jammer Side Information......Page 229
4.2.4 Computation of the Block Coded Word and Bit Error Rate......Page 231
4.3.1 Convolutional Code Encoder Characterization......Page 242
4.3.2 The Transfer Function of a Convolutional Code and the Free Distance......Page 246
4.3.3 Decoding of Convolutional Codes......Page 248
4.3.4 The Viterbi Algorithm......Page 250
4.3.5 Error Probabilities for Viterbi Decoding of Convolutional Codes......Page 256
4.3.7 Threshold Decoding of Convolutional Codes......Page 260
4.4 ITERATIVELY DECODED CODES......Page 261
4.4.1 Turbo Codes......Page 262
4.4.2 A Serial Concatenated Convolutional Code......Page 267
4.4.4 Parallel Concatenated Block Codes......Page 269
4.4.5 Low-Density Parity Check Codes......Page 270
4.5.1 Bose, Chaudhuri, and Hocquenghem Codes......Page 271
4.5.2 Reed-Solomon Codes......Page 273
4.5.3 Convolutional Codes with Maximum Free Distance......Page 275
4.5.4 Hard- and Soft-Decision FFH/MFSK with Repeat Coding BER Performance......Page 277
4.6 SHANNON’S CAPACITY THEOREM, THE CHANNEL CODING THEOREM, AND BANDWIDTH EFFICIENCY......Page 284
4.6.3 Bandwidth Efficiency......Page 285
4.7 APPLICATIONS OF ERROR CONTROL CODING......Page 286
References......Page 287
Problems......Page 290
5.1 TRACKING OF RESIDUAL CARRIER SIGNALS......Page 293
5.2.1 The Likelihood Function for Phase Estimation......Page 294
5.2.2 The Maximum-Likelihood Estimation of Carrier Phase......Page 295
5.2.3 Long Loops and Short Loops......Page 296
5.2.4 The Stochastic Differential Equation of Operation......Page 297
5.2.5 The Linear Model of the PLL with Noise......Page 299
5.2.6 The Various Loop Filter Types......Page 301
5.2.7 Transient Response of a Second-Order Loop......Page 304
5.2.8 Steady State Tracking Error When the Phase Error Is Small......Page 305
5.2.9 The Variance of the Linearized PLL Phase Error Due to Thermal Noise......Page 308
5.2.10 Frequency Response of the Active Filter Second-Order PLL......Page 310
5.2.11 Phase Noise Effects of the Total Phase Error in the PLL......Page 311
5.2.12 Nonlinear PLL Results......Page 315
5.3.1 Digital Frequency Synthesis......Page 317
5.3.2 Direct Frequency Synthesis......Page 319
5.3.3 Indirect Frequency Synthesis......Page 321
5.3.4 Indirect Frequency Synthesis Transfer Functions......Page 322
5.4.1 Tracking a BPSK Signal with a Squaring Loop......Page 323
5.4.2 Tracking a BPSK Signal with an Integrate-and-Dump Costas Loop......Page 328
5.4.3 Tracking a BPSK Signal with a Passive Arm Filter Costas Loop......Page 332
5.4.6 Improved Frequency Acquisition of a Passive Filter Costas Loop......Page 333
5.4.7 Lock Detectors for Costas and Squaring Loops......Page 335
5.4.8 False Lock in Costas Loops......Page 336
5.4.9 Decision-Directed Feedback Loops......Page 344
5.5.1 The N-th Power Loop......Page 347
5.5.4 Modified Four-Phase Costas Loop-SQPSK Modulation......Page 349
5.6 FREQUENCY LOCKED LOOPS......Page 358
5.6.1 The Cross Product FLL......Page 359
5.7 SUMMARY......Page 360
References......Page 361
Problems......Page 363
6.0 INTRODUCTION......Page 367
6.2 ACTIVE SEARCH ACQUISITION (SLIDING CORRELATOR)......Page 372
6.2.1 Mean Acquisition Time Model for an Active Search System......Page 373
6.2.2 Analysis of the Active Search System......Page 374
6.2.3 Single Dwell Mean Acquisition Time Formula with Doppler......Page 379
6.2.4 Mean Acquisition Time for the Double Dwell Time Search......Page 380
6.2.5 Active Acquisition System Structures Used for Acquisition for BPSK, QPSK, OQPSK, and MSK......Page 382
6.3 ACQUISITION PROBABILITY VERSUS TIME FOR ACTIVE CORRELATION......Page 386
6.4 PARALLEL METHODS OF ACTIVE CODE ACQUISITION......Page 389
6.4.1 Active Search Mean Acquisition Time with Parallel Processing......Page 390
6.5.1 Signal Modeling for BPSK Code Acquisition Utilizing the FFT......Page 393
6.5.2 Model for the Correlator Output Out of the FFT......Page 398
6.5.3 Evaluation of the FFT Enhanced Acquisition System Output Variance for an Arbitrary Gaussian Noise Process......Page 400
6.5.4 BPSK Code Modulation Evaluation of PD and PFA for Arbitrary Noise......Page 401
6.5.5 Gaussian Approximations of the Detection Probability for BPSK......Page 404
6.5.6 Losses Between Bins in a Zero Padded FFT......Page 405
6.5.7 The Frequency Search Range and Total Frequency Losses Using an FFT......Page 406
6.5.8 The Frequency Bins of the FFT Are Uncorrelated......Page 407
6.5.9 BPSK Code Modulation g in a Matched Spectral Jammer......Page 408
6.5.10 BPSK Code Modulation g for a Narrowband Jammer......Page 409
6.5.11 Balanced QPSK and Balanced OQPSK Acquisition Performance......Page 411
6.5.12 A Gaussian Approximation for PD for Balanced QPSK and Balanced OQPSK......Page 416
6.6 AN OPTIMUM SWEEP SEARCH TECHNIQUE FOR ACTIVE ACQUISITION......Page 418
6.7 SEQUENTIAL DETECTION......Page 421
6.7.2 Sequential Detection for DS Acquisition with BPSK Data Modulation......Page 422
6.7.3 A Sequential Detection Implementation......Page 425
6.7.4 Acquisition Time of a Sequential Detector......Page 427
6.7.5 The Tong Detector......Page 430
6.8 TRANSFORM METHODS USED IN CODE ACQUISITION......Page 433
6.9.1 The Matched Filter......Page 435
6.9.2 Optimum Time of Arrival Estimator......Page 437
6.9.3 Digital Passive Matched Filter Introduction......Page 438
6.9.4 DPMF Acquisition Model......Page 439
6.9.5 Digital Matched Filter Acquisition Time Model......Page 440
6.9.6 Signal Model for DPMF......Page 442
6.9.8 Variance Evaluation of an MSJ......Page 444
6.9.9 Correlation Signal Voltage Loss......Page 445
6.9.10 Combining Coherent Segments of the DMF with the FFT......Page 446
6.9.11 Detection and False Alarm Probability Densities for the NRZ Code Case......Page 448
6.9.12 The Acquisition Probability......Page 451
6.9.13 Mean Acquisition Time Calculation......Page 454
6.10.1 Serial Active Search for Acquisition of FFH/MFSK Signals......Page 457
6.10.2 Detection and False Alarm Probabilities for FFH/MFSK Serial Active Search......Page 462
6.10.3 Detection and False Alarm Probabilities for SFH/MFSK Serial Active Search......Page 465
6.10.4 Acquisition Time Calculations for FFH/MFSK and SFH/MFSK......Page 468
6.11 SUMMARY......Page 469
References......Page 470
Selected Bibliography......Page 472
Problems......Page 473
6A1.0 SIGNAL FLOW GRAPHS......Page 476
6A1.1 SIGNAL FLOW GRAPH DEFINITIONS......Page 477
6A1.3 SIGNAL FLOW GRAPH REDUCTION AND MASON’S GAIN FORMULA......Page 478
6A2.0 DISCRETE TIME INVARIANT MARKOV PROCESSES AND FLOW GRAPHS......Page 481
6A3.0 Mathematical Basis for Generating Function Flow Graph Techniques......Page 486
Appendix 6A Problems......Page 487
Selected Bibliography......Page 489
7.1 BASIS FOR THE EARLY-LATE GATE CODE-TRACKING LOOP......Page 491
7.1.1 Maximum-Likelihood Estimate Formulation......Page 492
7.1.2 Maximum-Likelihood Estimate of the PN Code Timing......Page 493
7.2 FULL-TIME CODE-TRACKING LOOPS......Page 495
7.2.1 Baseband Early-Late Gate Code-Tracking Loop with NRZ Symbols......Page 496
7.2.2 Noncoherent Early-Late Gate I-Q Code-Tracking Loop......Page 501
7.2.4 Noncoherent I-Q Dot Product Code-Tracking Loop with Passive Arm Filters......Page 511
7.2.5 Noncoherent I-Q Dot Product Code-Tracking Loop with Active Arm Filters......Page 519
7.3.1 Signal Model for the Noncoherent I-Q Early-Late Gate Code-Tracking Loop with Channel Filtering......Page 520
7.3.2 Signal and Noise Terms in the Noncoherent I-Q Early-Late Gate Code Loop with Channel Filtering......Page 523
7.3.3 Signal Terms in the Noncoherent I-Q Early-Late Gate Code Loop with Channel Filtering......Page 525
7.3.4 Closed-loop Operation of the Noncoherent I-Q Early-Late Gate Code Loop with Channel Filtering......Page 531
7.3.5 Noncoherent I-Q Early-Late Gate Code-Tracking Loop with Channel Filtering of N(t) at f = 0......Page 534
7.3.6 Noncoherent Early-Late Gate I-Q Code Loop Tracking Error Variance with Channel Filtering......Page 537
7.3.7 Noncoherent Early-Late Gate Code I-Q Tracking Error Variance with Thermal Noise and Without Channel Filtering......Page 539
7.3.8 Noncoherent Early-Late Gate I-Q Code-Tracking Error Variance with Channel Filtering in White Gaussian Noise with NRZ Symbols......Page 540
7.3.9 Noncoherent Early-Late Gate I-Q Code-Tracking Performance with Narrowband Gaussian Interference Plus White Gaussian Noise with NRZ Symbols and No Channel Filtering......Page 541
7.4 TIME-SHARED NONCOHERENT CODE-TRACKING LOOPS......Page 545
7.5 PERFORMANCE OF A NONCOHERENT RF IMPLEMENTED TIME GATED EARLY-LATEGATE BANDPASS CODE-TRACKING LOOP......Page 554
7.6.1 First-Order Noncoherent I-Q Early-Late Gate Code-Tracking Loop......Page 560
7.6.2 Second-Order Ideal Noncoherent I-Q Early-Late Gate Code-Tracking Loop......Page 562
7.7 EARLY-LATE GATE NONCOHERENT I-Q CODE-TRACKING LOOP PULL-IN WITHOUT NOISE......Page 563
7.8.1 Multipath Effects on Filtered Noncoherent Code-Tracking Loops......Page 566
7.8.2 Multipath Effects on Baseband Coherent I-Q Code-Tracking Loops......Page 572
7.8.3 The Multipath Error Plots Are the Same for Coherent and Noncoherent Code-Tracking Loops......Page 573
7.9 MEAN TIME TO LOSE LOCK FOR A FIRST-ORDER EARLY-LATE GATE RF CODE-TRACKING LOOP......Page 574
7.9.1 Model for the Analysis of the Mean Slip Time Performance of the Early-Late Gate Code-Tracking Loop with RF Implementation......Page 576
7.9.2 Mean Slip Time Comparison of Theory and Simulation for the Early-Late Gate Code-Tracking Loop with RF Implementation......Page 578
7.10 WIDEBAND JAMMING EFFECTS ON TRACKING AND MEAN TIME TO LOSE LOCKFOR THE EARLY-LATE GATE CODE-TRACKING LOOP WITH RF IMPLEMENTATION......Page 579
7.11 CRAMER-RAO BOUND ON CODE-TRACKING ERROR......Page 580
7.12.1 Heterodyning the Signal to Near Baseband......Page 583
7.12.2 Phase Rotation or Single Sideband Translation......Page 585
7.13 PULSING AND BLANKING IN A BASEBAND EARLY-LATE CODE-TRACKING LOOP......Page 587
7.13.2 Full Correlation in the Coherent Baseband I-Q Code-Tracking Loop When the Signal Is Pulsed......Page 588
7.13.3 Synchronous Blanking of the Noise When the Signal Is Pulsed Off......Page 592
References......Page 596
Problems......Page 598
APPENDIX 7A MEAN TIME TO LOSE LOCK FOR A FIRST-ORDER EARLY-LATE GATE CODE-TRACKING LOOP WITH EITHER BANDPASS ARM FILTERS OR BASEBAND ARM FILTERS......Page 600
7A2.0 MEAN SLIP TIME DERIVATION......Page 601
Appendix 7A Selected Bibliography......Page 607
8.1 DATALESS FREQUENCY-HOPPED TIME TRACKING LOOP MODEL......Page 608
8.1.1 Loop Model for the Frequency-Hopping Loop Without Data......Page 614
8.1.2 Evaluation of the Spectral Density of the Noise Terms......Page 615
8.1.3 Closed Loop Tracking Loop Performance......Page 617
8.2 FREQUENCY-HOPPING TRACKING WITH BPSK AND DPSK DATA MODULATION......Page 618
Problem......Page 619
9.1 BRIEF HISTORY OF CELLULAR SYSTEMS......Page 621
9.2.2 Mobile Cells......Page 622
9.2.4 Frequency Reuse in a Cellular System......Page 623
9.2.6 Handoff......Page 624
9.2.7 More on Cell Structure......Page 625
9.3 MULTIPLE ACCESS TECHNIQUES FOR WIRELESS COMMUNICATIONS......Page 627
9.3.1 A Brief Introduction to Multiple Access......Page 628
9.3.2 Frequency Division Multiple Access......Page 629
9.4 TIME DIVISION MULTIPLE ACCESS......Page 630
9.4.1 The Efficiency of TDMA Systems......Page 631
9.4.2 The Number of Available Channels in a TDMA System......Page 632
9.5.2 Code Division Multiple Access......Page 633
9.5.3 Hybrid Techniques for Spread Spectrum Signals......Page 635
9.7 THE CAPACITY OF CELLULAR CDMA OF A SINGLE CELL......Page 637
9.8.1 ALOHA Channel......Page 642
9.8.2 The Slotted ALOHA Channel......Page 644
9.9.1 1-Persistent CSMA......Page 647
9.9.4 Conceptual Comparison of the Multiple Access Methods......Page 648
9.10 MULTIUSER DETECTION CONCEPTS......Page 649
9.10.1 The Matched Filter for CDMA Signals......Page 650
9.10.2 Conventional Single User Detector in the Synchronous Case......Page 653
9.10.3 Decorrelating Detector......Page 654
9.10.4 Minimum Mean Square Error Estimator......Page 657
9.10.6 Successive Interference Cancellation......Page 660
9.10.8 Bit Error Rate Performance Estimates of the Detectors......Page 661
9.11 AN EXAMPLE OF A CDMA SYSTEM: CDMA2000......Page 664
9.11.2 Forward Link and Reverse Link Channels’ Overview......Page 666
9.11.3 Physical Layer of cdma2000......Page 667
9.11.4 Forward Link Physical Channels......Page 668
9.11.5 cdma2000 Reverse Physical Channels......Page 679
9.12.1 WCDMA Radio Frequency Protocol Architecture......Page 686
9.12.3 WCDMA Physical Layer......Page 687
9.12.4 WCDMA Channel Coding......Page 690
9.12.5 WCDMA Power Control......Page 691
9.12.9 WCDMA Packet Data Services......Page 692
References......Page 694
Problems......Page 696
10.1 AN INTRODUCTION TO RADIO PROPAGATION......Page 697
10.2.1 Free Space Path Loss Model......Page 698
10.2.2 Received Signal Power and the Electric Field Strength......Page 700
10.2.3 Plane Earth Propagation Path Loss Model......Page 701
10.2.4 Egli’s Path Loss Model......Page 702
10.2.6 COST-231 Hata Path Loss Model......Page 703
10.2.7 ECC-33 Path Loss Model......Page 704
10.2.8 Microcell Propagation Models......Page 705
10.3.1 Log-Normal Path Loss Model for Indoors......Page 707
10.3.2 Floor Attenuation Factor Path Loss Model......Page 708
10.4 SMALL-SCALE EFFECTS MULTIPATH FADING......Page 709
10.4.1 Rayleigh and Rician Fading Models......Page 711
10.4.3 Multipath Time Delay Spread Fading......Page 713
10.4.4 Fading Effects of Multipath Doppler Spread......Page 716
10.5.1 Deterministic Models......Page 718
10.5.2 Stochastic Time-Variant Linear Channels......Page 721
10.5.3 The Wide-Sense Stationary Channels......Page 724
10.5.4 The Uncorrelated Scattering Channel......Page 726
10.6.1 The Effects of a Rayleigh Fading Channel on the BPSK Bit Error Rate......Page 730
10.6.2 The Effects of a Rayleigh Fading Channel on the DPSK Bit Error Rate......Page 731
10.6.4 Nakagami Fading Channel Model......Page 732
10.7.2 Combining Methods for Fading Mitigation......Page 734
10.8 EQUALIZATION FOR MULTIPATH IMPROVEMENT......Page 741
10.8.1 Baseband Transversal Symbol Rate Equalizer......Page 742
10.8.2 Baseband Adaptive Equalization......Page 744
10.8.3 Baseband Decision Feedback Equalizers......Page 749
10.9.1 Multipath Performance Improvement Via Diversity Techniques for Binary Channels......Page 751
10.10.1 The Tapped Delay Line Channel Model for a Frequency Selective Slowly Fading Channel......Page 757
10.10.2 The RAKE Receiver......Page 759
10.10.3 Performance of the RAKE Receiver......Page 760
10.11 BINARY CODED CHERNOFF BER BOUNDS FOR FADING CHANNELS......Page 761
10.11.1 Chernoff Bound for Binary Linear Block Codes......Page 762
10.11.2 Coded Orthogonal FSK Signal Model for Fading Channels......Page 764
10.11.3 BER of Soft-Decision Decoding and FSK Modulation with Linear Binary Block Codes over Rayleigh Fading Channels......Page 765
10.11.4 BER of Hard-Decision Decoding and FSK Modulation with Linear Binary Block Codes over Rayleigh Fading Channels......Page 767
10.11.5 Chernoff Bounds for the BER of Convolutional Codes over Rayleigh Fading Channels with Soft and Hard Decisions and Binary FSK Modulation......Page 769
10.12.2 Adaptive Array Smart Antennas......Page 771
10.12.4 Forming Smart Antennas with Switched Beams......Page 776
10.12.5 MIMO Systems......Page 777
10.13 SUMMARY......Page 778
References......Page 779
Problems......Page 781
11.0 INTRODUCTION......Page 783
11.1.2 The LPI Scenario......Page 784
11.1.3 Brief Signal Propagation Summary......Page 786
11.2 AN INTRODUCTION TO RADIOMETRIC DETECTORS......Page 787
11.2.1 The Radiometer......Page 788
11.2.2 Limitations of the Radiometer Performance Results......Page 790
11.2.3 Low-Pass Filter Radiometer......Page 793
11.2.4 The Correlation Radiometer......Page 795
11.2.5 Relationship of the Output SNR and the Deflection......Page 797
11.2.6 The Optimum Detector for Frequency-Hopped Waveforms......Page 798
11.2.7 The Filter Bank Combiner......Page 799
11.3 SPECTRUM ANALYZERS......Page 802
11.3.1 Narrowband Signal Spectrum Analyzer Performance......Page 804
11.3.2 Wideband Signal Spectrum Analyzer Performance......Page 805
11.4.2 The Baseband and Carrier Cyclostationarity......Page 806
11.4.3 BPSK Through a Filter and Squarer Circuit......Page 807
11.4.4 Balanced QPSK Through a Filter and Squarer Circuit......Page 814
11.4.5 Balanced OQPSK Through a Filter and Squarer Circuit......Page 815
11.4.6 MSK Through a Filter and Squarer Circuit......Page 816
11.4.7 Frequency-Hopped Signals with MFSK Through a Filter and Squarer Circuit......Page 818
11.4.8 Slow Frequency-Hopped Signals with DPSK Data Modulation Through a Filter and Squarer Circuit......Page 820
11.4.9 Delay and Multiply Chip Rate Detectors with Balanced QPSK......Page 822
11.5 PERFORMANCE OF A CHIP RATE DETECTOR FOR BPSK......Page 824
11.6 FREQUENCY ESTIMATION OF AN UNMODULATED TONE WITH A LIMITER DISCRIMINATOR......Page 828
11.7 SUMMARY......Page 830
References......Page 831
Problems......Page 832
APPENDIX 11A SAMPLES FROM A BANDPASS FILTERED GAUSSIAN RANDOM PROCESS......Page 834
12.1 ABSORBING MARKOV CHAINS......Page 837
12.2 THE FUNDAMENTAL MATRIX......Page 840
12.3 MEAN AND VARIANCE OF THE NUMBER OF TIMES A PROCESS IS IN A TRANSIENT STATE......Page 841
12.4 MEAN AND VARIANCE OF THE NUMBER OF TIMES A PROCESS IS IN A TRANSIENT STATE—GENERAL CASE......Page 845
12.5 THE PROBABILITY OF STARTING IN A TRANSIENT STATE AND ENDING IN A PERSISTENT STATE......Page 850
12.6 LOCK DETECTOR PERFORMANCE......Page 852
12.7.1 Residual Carrier Loop Lock Detector Block Diagram Model......Page 856
12.7.2 Suppressed Carrier Lock Detector......Page 858
12.7.4 A Frequency-Hopping Lock Detector for SFH/DPSK......Page 859
Problems......Page 861
About the Author......Page 865
Index......Page 867