دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Lyandysha Viktorovna Zholudeva. Michael Aron Lane
سری:
ISBN (شابک) : 0128192607, 9780128192603
ناشر: Academic Press
سال نشر: 2022
تعداد صفحات: 473
[476]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 7 Mb
در صورت تبدیل فایل کتاب Spinal Interneurons: Plasticity after Spinal Cord Injury به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب اینترنورون های نخاعی: پلاستیسیته پس از آسیب نخاعی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
طناب نخاعی از چهار نوع نورون تشکیل شده است: نورون های حرکتی، نورون های پیش گانگلیونی، نورون های پیش بینی صعودی، و نورون های داخلی نخاعی. اینترنورون ها نورون هایی هستند که اطلاعات را در مدارهای محلی پردازش می کنند و توانایی باورنکردنی برای انعطاف پذیری عصبی دارند، چه به دلیل فعالیت مداوم، آسیب عصبی یا در پاسخ به بیماری. اگرچه طبق تعریف، آکسونهای آنها به همان ساختار سوما (در این مورد نخاع) محدود میشود، نورونهای بیناعصاب نخاعی میتوانند کل مدارهای عصبی را جوانه بزنند و دوباره سیمکشی کنند و به بازیابی ارتباط عصبی مختل شده پس از آسیب به بدن کمک کنند. طناب نخاعی (یعنی دور زدن محل ضایعه).
اینترنورون های نخاعی یک نمای کلی متمرکز از نحوه طبقه بندی بین نورون ها توسط دانشمندان به طور کلی، تکنیک های مورد استفاده برای شناسایی زیرمجموعه های نورون های داخلی، نقش آنها در مدارهای عصبی خاص ارائه می کند. و شواهد علمی برای نوروپلاستی بودن آنها. درک ظرفیت نوروپلاستیسیته و هویت نورونهای خاص نخاعی که برای بهبودی بهینه هستند، ممکن است به تعیین نامزدهای سلولی برای توسعه درمانها کمک کند.
اینترنورون های نخاعی به دانشمندان علوم اعصاب، پزشکان و کارآموزان کتاب مرجعی ارائه می دهد که به طور انحصاری بر روی نورون های نخاعی، تکنیک ها و آزمایش های به کار رفته برای شناسایی و مطالعه این سلول ها تمرکز دارد. به عنوان بخشی از مدارهای عصبی طبیعی و آسیب دیده، و با ارائه کارهای پیش بالینی و بالینی مرتبط تا به امروز، پتانسیل درمانی این سلول ها را برجسته می کند. افراد صنعت نیز از این کتاب بهره مند خواهند شد، که آخرین استراتژی های درمانی برای هدف قرار دادن نورون های نخاعی را گردآوری می کند، ملاحظاتی برای توسعه و استفاده از درمان ها وجود دارد، و اینکه چگونه چنین درمان هایی نه تنها می توانند به کلینیک ترجمه شوند، بلکه چگونه وجود دارد. درمان ها باید به طور مناسب به صورت معکوس به نیمکت ترجمه شوند.
The spinal cord is comprised of four types of neurons: motor neurons, pre-ganglionic neurons, ascending projection neurons, and spinal interneurons. Interneurons are neurons that process information within local circuits, and have an incredible ability for neuroplasticity, whether due to persistent activity, neural injury, or in response to disease. Although, by definition, their axons are restricted to the same structure as the soma (in this case the spinal cord), spinal interneurons are capable of sprouting and rewiring entire neural circuits, and contribute to some restoration of disrupted neural communication after injury to the spinal cord (i.e., “bypassing the lesion site).
Spinal Interneurons provides a focused overview of how scientists classify interneurons in general, the techniques used to identify subsets of interneurons, their roles in specific neural circuits, and the scientific evidence for their neuroplasticity. Understanding the capacity for neuroplasticity and identity of specific spinal interneurons that are optimal for recovery, may help determine cellular candidates for developing therapies.
Spinal Interneurons provides neuroscientists, clinicians, and trainees a reference book exclusively concentrating on spinal interneurons, the techniques and experiments employed to identify and study these cells as part of normal and compromised neural circuits, and highlights the therapeutic potential of these cells by presenting the relevant pre-clinical and clinical work to date. People in industry will also benefit from this book, which compiles the latest in therapeutic strategies for targeting spinal interneurons, what considerations there are for the development and use of treatments, and how such treatments can not only be translated to the clinic, but how existing treatments should be appropriately reverse-translated to the bench.
Front Cover Spinal Interneurons Spinal Interneurons: Plasticity after Spinal Cord Injury Copyright Contents List of contributors Preface I - Spinal interneurons – motor and sensory neuronal networks 1 - The neuronal cell types of the spinal cord Introduction History of research on spinal cord neurons Classification systems for spinal cord interneuron cell types Anatomy Morphology Connectivity Electrophysiology Neurochemistry Molecular markers Embryonic lineage Multiomics profiling Perspective The dorsal horn neurons of the spinal cord Superficial dorsal neurons Laminae I–II Laminae II–III Deep dorsal neurons Laminae III–IV Laminae V–VI Perspective The ventral horn neurons of the spinal cord V0 lineage V1 lineage V2 lineage Motor neuron lineage V3 lineage Dorsally derived ventral neurons Perspective Future directions for understanding spinal cord neuron types Broader views on anatomy Context-dependent function of spinal cord cell types Dynamic perspectives on cell types and cell states Abbreviations Acknowledgments References 2 - Identified interneurons contributing to locomotion in mammals Introduction Organization of spinal locomotor interneurons Spinal interneurons with locomotor functions Transcription factor code to identify interneuron populations V0 interneurons V1 interneurons V2 interneurons V2a interneurons V2b interneurons V3 interneurons Dorsally derived interneuron populations dI3 interneurons dI6 interneurons Other populations Hb9 interneurons Shox2 interneurons Limitations of transcription factor code Interneurons in a locomotor framework There are flexor and extensor burst generators on each side of the cord V1 and V2b interneurons provide mutual inhibition of the half centers V1 and V2b interneurons are partly functionally redundant but have distinct positions in the circuit Two commissural pathways involving V0 interneurons secure left-right alternation V3 interneurons may synchronize left and right sides Plasticity of interneurons following spinal cord injury V2a interneurons V3 interneurons dI3 interneurons Shox2 interneurons Inhibitory interneurons modulating locomotion Future perspectives Abbreviations Acknowledgments References 3 - Decoding touch: peripheral and spinal processing Introduction Part I: detecting touch What do cutaneous sensory neurons look like? The incredible heterogeneity of somatosensory neurons A quick sense of touch: Aβ fibers Shape and texture: Aβ SAI-LTMRs Stretch sensors: Aβ SAII-LTMRs Vibration sensors: Aβ RA-LTMRs Skin stroking: Aβ Field-LTMRs Ultrafast pain: Aβ-HTMRs Fast pain and light touch: Aδ fibers Touch directionality: Aδ-LTMRs Fast localization of pain: Aδ-nociceptors The tiny ones that can hurt or comfort: C-fibers The caress neurons: C-LTMRs Burning pain: peptidergic C-nociceptors Mechanical pain and itch: nonpeptidergic C-nociceptors Touch encoding by skin sensory neurons: an integrative view Layer 1: unique electrophysiological properties Layer 2: unique end organ associations Layer 3: unique spatial distribution patterns Layer 4: unique peripheral processing Putting it all together Part II: processing touch information in the spinal cord Touching the spinal cord: LTMR inputs to the dorsal horn The middlemen: neurons of the dorsal horn Interneurons: more than a relay station Projection neurons: sending a message to the brain The spinal circuits of touch Interneurons involved in touch perception Projection neurons involved in touch perception LTMR circuits, what do they do? Touch influences the way we move and recover from spinal cord injury Cutaneous input modulates motor output Interneurons involved in touch-motor circuits Touch and motor recovery Future challenges and direction in unraveling spinal LTMR circuits Abbreviations Acknowledgments References 4 - Spinal interneurons and pain: identity and functional organization of dorsal horn neurons in acute and persiste ... Introduction Molecular organization of the dorsal horn Lamina I Lamina II Laminae III–IV Acute pain signaling Spinal projection neurons in acute pain Lamina I projection neurons Laminae III–V projection neuron Spinal interneurons Laminae I–II interneurons Laminae III–V interneurons Spinal mechanisms of chronic pain Superficial SDH interneuron subpopulations and chronic pain Lamina II interneurons and chronic pain Somatostatin lineage interneurons Dynorphin interneurons Protein kinase C gamma interneurons Calretinin interneurons Laminae III–IV interneurons and chronic pain Neuropeptide Y interneurons Parvalbumin interneurons Transient VGLUT3 interneurons Cholecystokinin interneurons Early receptor tyrosine kinase interneurons Conclusions Abbreviations References 5 - Cholinergic spinal interneurons Introduction Cholinergic dorsal horn interneurons Central canal cluster cells within lamina X Partition cells in the intermediate gray matter Conclusions List of abbreviations References 6 - Spinal interneurons, motor synergies, and modularity Introduction The comparative neuroethology and evolutionary perspective on synergy The evolutionary history of interneuron systems—comparative evolution Natural selection pressures and the comparative perspective Selection and constraints that might favor conserved and highly “anticipatory” organization of many parts of spinal circuitry Neuromechanics perspectives on motor synergies Motor primitives and synergies in relation to spinal interneuron systems Mechanism 1: temporal burst elements as primitives Mechanism 2: time-varying synergy elements Mechanism 3: spatial synergy elements Mechanism 4: unitary bursts of a spatial motor synergy Mechanism 5: primitives in self-organized pattern formation Mechanism 6: primitives in flexible combinations of rhythm and pattern element mechanisms Neurophysiological support of unitary interneuron circuits tied to motor synergies Stimulation results supporting motor synergies Afferent manipulation effects on unitary motor synergies Identifying interneuron projections with spike triggered averaging Trunk and higher level spinal interactions with motor synergies Developmental issues—interneuronal infrastructure and functional stability over the lifespan Neuroengineering with spinal interneuron systems Neuroengineering methods Intraspinal microstimulation Epidural stimulation Optogenetics Plasticity induced by neuroengineered interventions and rehabilitation efforts—motor synergy stability Crafted and contingent stimulation strategies for plasticity and motor synergies Cross-talk and integration of motor synergy and autonomic pathways? Discussion and conclusions Abbreviations Acknowledgments References II - Spinal interneurons – a role in injury and disease 7 - Propriospinal neurons as relay pathways from brain to spinal cord Introduction Direct and indirect pathways from the brain to spinal cord motor neurons Direct pathways between the motor cortex and spinal motor neurons for hand dexterity Indirect pathways between the motor cortex and spinal motor neurons enable hand dexterity: corticospinal propriospinal pathways Spinal interneurons propagate locomotor commands from supraspinal locomotor regions PNs reconnect supraspinal neurons and spinal motor neurons PNs reconstitute local spinal circuits to bypass lesions after SCI Dormant relay pathways after SCI: formation of maladaptive plasticity in injured spinal cord Peri-lesion hyperinhibition after SCI silences relay circuits Maladaptive sensorimotor circuits below the injury Therapeutic strategies for SCI: utilizing spinal interneurons Correction of maladaptive SpIN activity in the brain–spinal relay circuit to promote locomotion recovery Concluding remarks Abbreviations References 8 - Changes in motor outputs after spinal cord injury Introduction Muscle spasms following spinal cord injury Descending neuromodulation of spinal sensorimotor circuits Mechanisms of motor outputs following injury Changes in motor neuron excitability The role of motor neuron PICs in generating muscle spasms Unregulated sensory inputs after injury Loss of descending serotonergic neuromodulation Broadening of sensory receptive fields Bursting deep dorsal horn interneurons Changes in genetically identified spinal interneurons after injury dI3 interneurons dI6 interneurons V0 interneurons V1 and V2b interneurons V2a interneurons V3 interneurons Excitation–inhibition balance in spinal interneurons Increased premotor excitatory drive Decreased activity/efficacy of inhibitory synaptic drive Concluding remarks Abbreviations References 9 - Spinal interneurons and breathing Introduction Spinal interneurons integrated into respiratory networks Spinal respiratory networks Phrenic motor circuit Electrophysiological characterization Anatomical characterization SpIN neurotransmitter phenotypes Intercostal motor circuitry Electrophysiological characterization Anatomical characterization Molecular characterization Abdominal motor circuitry SpINs and their role in neuroplasticity Respiratory SpINs following spinal cord injury Respiratory SpINs and degenerative disease Future perspectives List of abbreviations References 10 - Spinal interneuronal control of the lower urinary tract Introduction Spinal interneurons and micturition Distribution of spinal interneurons involved in micturition reflex circuitry Bladder Urethra External urethral sphincter Overlap of interneuronal distribution Role of spinal interneurons in micturition function Plasticity of spinal interneurons following SCI Targeting interneurons for LUT therapeutics Concluding remarks Abbreviations Conflicts of interest Acknowledgments References 11 - Spinal interneurons and autonomic dysreflexia after injury Introduction—characteristics of spinal cord interneurons Properties of interneurons related to autonomic function Role of interneurons in autonomic dysfunction after spinal cord injury Thermoregulatory and bowel/bladder dysfunction Cardiovascular dysfunction Autonomic interneuronal plasticity in relation to autonomic dysreflexia after spinal cord injury Conclusion Abbreviations References 12 - Human spinal networks: motor control, autonomic regulation, and somatic-visceral neuromodulation Introduction The discovery of complex human spinal cord circuitry Early observations of complex motor patterns Immature human locomotor activity Neuromodulation of human spinal circuitry The role of sensory processing in control of human locomotion Locomotor (recovery) training Plantar pressure stimulation Vibration Neuromodulation for motor control Two approaches for spinal cord epidural stimulation for walking Voluntary movement with epidural stimulation Spinal cord epidural stimulation and task specific stand training reveals human spinal circuitry learning Transcutaneous spinal neuromodulation Multi-modal neuromodulation to control posture and locomotion Neuromodulation of autonomic function Mechanisms of human spinal networks and neuromodulation Translation to therapeutics and future directions Abbreviations References 13 - Spinal interneurons post-injury: emergence of a different perspective on spinal cord injury Introduction Role of spinal networks in coordinating movements What are the consequences of redundancies of neural networks? Importance and robustness of sensory information in controlling movement Progress in spinal stimulation facilitating recovery of locomotor function Mechanisms of recovery of locomotor function Spinal stimulation increases the excitability of spinal interneurons and enhances sensory input to facilitate reorganization Dynamics of spinal networks Voluntary control becoming independent of original long descending axons after a “complete” spinal injury Is sensory-driven recovery of locomotion assignable to specific sensory receptor types? Is central pattern generation a contributing factor to the recovery of organ systems following paralysis? References 14 - A “Unified Theory” of spinal interneurons and activity-based rehabilitation after spinal cord injury Introduction Supporting evidence from the cat model Supporting evidence from the bipedal rat model Supporting evidence from the contused rat model Some clinical evidence: the chronically injured spinal cord can respond to load-related afferent input Whence cometh the weakness? In summary: the Unified Theory Abbreviations Acknowledgments References 15 - Spinal interneurons and cell transplantation Introduction Neural transplantation: lessons learned from preclinical models Spinal cord injury: clinical challenges and pathophysiology History of neural tissue transplantation in preclinical studies Emergence of fetal tissue transplantation in spinal cord injury models Transplantation of multipotent and lineage-restricted progenitors Transplantation of enriched or restricted populations of spinal cord progenitors Characterization of transplanted interneuron phenotypes Differentiation and transplantation of human spinal cord neurons Recapitulating spinal cord development through directed differentiation Molecular strategies for directed differentiation in vitro Generation of specific interneuron subtypes from human PSCs Evidence for the importance of regional identity in functional recovery Conclusion: the future of clinical transplantation approaches for SCI Abbreviations References 16 - Spinal interneurons and cellular engineering Introduction Delivery of genetic material Genomic integration methods Conditional gene expression Neuromodulation through optogenetic, sonogenetic, or chemogenetic means Optogenetics Sonogenetics Chemogenetics Chemogenetic gene expression modulation Chemogenetic functional modulation Conclusion Abbreviations References Index A B C D E F G H I K L M N O P R S T U V W Z Back Cover