دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Harendra Singh, H. M. Srivastava, R. K. Pandey سری: Mathematics and its Applications ISBN (شابک) : 2023000426, 9781032436029 ناشر: CRC Press سال نشر: 2023 تعداد صفحات: 314 [315] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 19 Mb
در صورت تبدیل فایل کتاب Special Functions in Fractional Calculus and Engineering به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب توابع ویژه در حساب کسری و مهندسی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Half Title Series Page Title Page Copyright Page Table of Contents Preface Editors Contributors Chapter 1 An Introductory Overview of Special Functions and Their Associated Operators of Fractional Calculus 1.1 Introduction, Definitions and Preliminaries 1.2 Hypergeometric Functions: Extensions and Multivariate Generalizations 1.3 The Zeta and Related Functions of Analytic Number Theory 1.4 Extensions and Generalizations of the Mittag-Leffler-Type Functions 1.5 Fractional Calculus and Its Applications 1.6 Concluding Remarks and Observations Conflicts of Interest Bibliography Chapter 2 Analytical Solutions for the Fluid Model Described by Fractional Derivative Operators Using Special Functions in Fractional Calculus 2.1 Introduction 2.2 Fractional Calculus Operators and Special Functions 2.3 Fractional Model Under Consideration 2.4 Solutions Procedures 2.4.1 Solutions Procedures with Temperature Distrbution 2.4.2 Solutions Procedures with Velocity Distribution 2.5 Results and Discussion 2.6 Conclusion Conflict of Interest References Chapter 3 Special Functions and Exact Solutions for Fractional Diffusion Equations with Reaction Terms 3.1 Introduction 3.2 Diffusion-Reaction 3.2.1 Case -K[sub(β)] [sup(t)]=δ(t),−1<η, μ ̸= 2 3.2.2 Case -K[sub(β)] [sup(t)] = T[sup(−β)] /Γ(1−β), −1 < η, μ ̸= 2 3.2.3 Case -K[sub(β)] [sup(t)]=N[sup(′)] [sub(β)] [sup(e)][sup(−β′T)] , −1 < η, μ ̸= 2 3.2.4 Reaction Process – Arbitrary Reaction Rates 3.3 Discussion and Conclusion Acknowledgment References Chapter 4 Computable Solution of Fractional Kinetic Equations Associated with Incomplete ℵ-Functions and M-Series 4.1 Introduction 4.2 Generalized FKE Involving Incomplete ℵ-Functions and M-Series 4.3 Special Cases 4.4 Conclusions Declarations References Chapter 5 Legendre Collocation Method for Generalized Fractional Advection Diffusion Equation 5.1 Introduction 5.2 Mathematical Background of Fractional Calculus 5.3 Function Approximation Using Legendre Polynomials 5.3.1 Approximation of a Two-Variable Function Using Legendre Polynomials 5.3.2 Collocation Method for GFADE 5.4 Convergence Analysis 5.5 Error Analysis 5.6 Numerical Results 5.7 Conclusion References Chapter 6 The Incomplete Generalized Mittag-Leffler Function and Fractional Calculus Operators 6.1 Introduction, Definitions, and Preliminaries 6.2 The Incomplete Generalized Mittag-Leffler Function 6.2.1 Basic Properties of Ξ[sup(ρ,κ)] [sub(α, β)] (z) 6.3 Incomplete Fox-H, Fox-Wright Representations and Mellin-Barnes Integrals of Ξ[sup(ρ,κ)] [sub(α, β)] (z) 6.4 Integral Transforms Representations 6.4.1 Laplace Transform 6.4.2 Whittaker Transforms 6.4.3 Euler-Beta Transform 6.5 Fractional Calculus Operators 6.6 Application to the Solution of Fractional Kinetic Equation 6.7 Further Remarks and Observations Bibliography Chapter 7 Numerical Solution of Fractional Order Diffusion Equation Using Fibonacci Neural Network 7.1 Introduction 7.2 Definitions 7.2.1 Caputo Fractional Order Derivative 7.2.2 Properties of Fibonacci Polynomial 7.3 FNN and Method to Apply to Solve Considered Model 7.3.1 Method to Use FNN to Solve Two-Dimensional FDE 7.3.2 Learning Algorithm for FNN 7.4 Numerical Example 7.5 Solution of Two-Dimensional FDE 7.6 Application of the Method in Engineering 7.7 Conclusion Bibliography Chapter 8 Analysis of a Class of Reaction-Diffusion Equation Using Spectral Scheme 8.1 Introduction 8.2 Preliminaries 8.3 Basic Properties of Laguerre Polynomials 8.4 Formulation of Opertional Matrix 8.5 Approximation of Function 8.6 Stability Analysis 8.7 Numerical Examination of FNKGE 8.8 Discussion of Outcomes 8.9 Application of Model 8.10 Conclusion References Chapter 9 New Fractional Calculus Results for the Families of Extended Hurwitz-Lerch Zeta Function 9.1 Introduction and Preliminaries 9.2 Fractional Integral Operators of the Ф[sup(ρ,τ;κ)] [sub(λ,μ; ν)] (t,s,a) 9.3 Fractional Differential Operators of the Ф[sup(ρ,τ;κ)] [sub(λ,μ; ν)] (t,s,a) 9.3.1 Fractional Calculus Operators of the Ф[sub(λ,μ; ν)] (t,s,a) 9.3.2 Fractional Calculus Operators of the Ф[sup(τ;κ)] [sub(μ; ν)] (t,s,a) 9.3.3 Fractional Calculus Operators of the Ф[sup(*)] [sub(μ)] (t,s,a) 9.4 Further Observations and Applications 9.5 Concluding Remarks References Chapter 10 Compact Difference Schemes for Solving the Equation of Fractional Oscillator Motion with Viscoelastic Damping 10.1 Introduction 10.2 Some Applications of Fractional Oscillator Motion with Viscoelastic Damping in Engineering 10.3 Construction and Analysis of Scheme 1 for Riemann–Liouville with 0 < α < 1 10.3.1 Construction of Scheme 1 10.3.2 Analysis of Scheme 1 10.4 Construction and Analysis of Scheme 2 for 1 < α < 2 10.4.1 Construction of Scheme 2 10.4.2 Analysis of Scheme 2 10.5 Numerical Example 10.6 Conclusions Author Contributions References Chapter 11 Dynamics of the Dadras-Momeni System in the Frame of the Caputo-Fabrizio Fractional Derivative 11.1 Introduction 11.2 Preliminaries 11.3 Model Formulation 11.4 Existence and Uniqueness of Solutions for the Projected System 11.5 Dynamics of the System (11.7) 11.6 Design of Sliding Mode Controller 11.7 Numerical Simulations by Single Step Adams-Bashforth-Moulton Method 11.8 Conclusion References Chapter 12 A Fractional Order Model with Non-Singular Mittag-Leffler Kernel 12.1 Introduction 12.2 Existence and Uniqueness of the Solutions 12.2.1 Linear Growth 12.2.2 Lipschitz Condition 12.3 Numerical Method 12.4 Results of the Simulation 12.5 Conclusion References Index