دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Kean How Cheah
سری:
ISBN (شابک) : 012819037X, 9780128190371
ناشر: Elsevier
سال نشر: 2022
تعداد صفحات: 330
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 7 مگابایت
در صورت تبدیل فایل کتاب Space Micropropulsion for Nanosatellites: Progress, Challenges and Future به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب ریز پیشرانه فضایی برای نانوماهواره ها: پیشرفت، چالش ها و آینده نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Front Cover Space Micropropulsion for Nanosatellites Space Micropropulsion for Nanosatellites Progress, Challenges and Future Copyright Contents Contributors 1 - Introduction 1 - Emerging of nanosatellites 1.1 Philosophy of micro- and nanosatellites 1.2 The birth of CubeSats 1.3 Launching of CubeSats 1.4 First CubeSats 1.5 CubeSats for scientific missions and commercialization 1.6 CubeSats beyond the Earth 1.7 The need of micropropulsion system References 2 - Chemical micropropulsions 2 - Cold gas microthruster 2.1 Background and principles of operation 2.2 Nozzle theory 2.3 Selection of propellant 2.4 State of the art—system with flight heritage 2.4.1 SNAP-1 (SSTL) 2.4.2 MEPSI (The Aerospace Corporation) 2.4.3 CanX-2 and CanX-4/5 (UTIAS/SFL) 2.4.4 Delfi-n3xt (TNO, U. Twente, and TU Delft) 2.4.5 POPSAT-HIP1 (microspace) 2.4.6 PRISMA, TW-1A and GomX-4B (NanoSpace) 2.4.7 NanoACE and MarCO (VACCO) 2.4.8 BEVO-2 and ARMADILLO (University of Texas at Austin) 2.5 Challenges and future 2.5.1 Miniaturization of nozzle via MEMS approach 2.5.2 Optimization of micronozzle design 2.5.2.1 Past developments 2.5.2.2 Current developments References 3 - Solid-propellant microthruster 3.1 Introduction 3.2 Solid propellants 3.2.1 Fuel 3.2.2 Oxidizer 3.2.3 Other reactants 3.2.4 Propellants 3.3 Solid-propellant propulsion fundamentals 3.3.1 Thrust chamber pressure and stability 3.3.2 Combustion model 3.4 Design of solid-propellant thruster 3.5 Progress in solid-propellant microthruster 3.5.1 Non-MEMS microthruster 3.5.2 MEMS-based microthruster 3.6 Conclusion and future prospects References 4 - Liquid propellant microthrusters 4.1 Historical background and principles of operation 4.1.1 Operating principles 4.2 Liquid propellants 4.2.1 Performance of propellant 4.2.2 From bipropellant to monopropellant 4.2.3 From macroscale to microscale 4.2.4 Emerging of energetic ionic liquids as green propellant 4.3 State-of-the-art liquid propellant microthruster 4.3.1 Hydrazine thrusters 4.3.2 EILs-based green propellant thrusters 4.3.2.1 1 N HPGP propulsion system 4.3.2.2 1 N green propellant reaction control system 4.3.2.3 1 N GR-1 thruster 4.3.3 From small satellites into nanosatellites 4.3.3.1 LituanicaSAT-2 4.3.3.2 M6P 4.3.3.3 ELSA-1d 4.3.3.4 ArgoMoon and Lunar Flashlight 4.3.3.5 Pathfinder Technology Demonstration (PTD) 4.3.4 Under development 4.3.4.1 MR-140 hydrazine thrusters 4.3.4.2 MPS-120 hydrazine and MPS-130 green propellant thrusters 4.3.4.3 GR-1A and GR-M1 thrusters 4.3.4.4 Pinot-G 4.3.4.5 BGT-X1 and X5 4.3.4.6 Green mono-propellant micropropulsion system 4.3.4.7 MPUC 4.3.4.8 PM200 4.4 Challenges and future 4.4.1 Bipropellant micropropulsion system 4.4.2 Monopropellant micropropulsion system References 3 - Electric micropropulsions 5 - Electrothermal microthruster 5.1 Historical background and principle of operation 5.2 Current state of the art of electrothermal micropropulsion 5.2.1 Conventional microresistojet thrusters 5.2.2 A less conventional option: low-pressure microresistojet thrusters 5.2.3 An even less conventional option: solar thermal propulsion 5.3 Selection of propellant for electrothermal microthrusters 5.4 Theoretical analysis of conventional microresistojets 5.5 Conclusion and future challenges References Further reading 6 - Electrostatic microthrusters 6.1 Background 6.2 Principle of operation 6.2.1 Ionization and plasma generation 6.2.2 Ion acceleration 6.2.3 Beam neutralization 6.3 Selection of propellant 6.3.1 Gaseous 6.3.2 Liquid 6.3.3 Solid 6.4 Current state of the art 6.4.1 Systems with flight heritage 6.4.2 Systems under development 6.4.2.1 Miniature gridded ion engines 6.4.2.2 Miniature Hall effect thrusters 6.4.2.3 Electrospray thrusters 6.5 Challenges and future 6.5.1 Optimization References 7 - Electromagnetic microthrusters 7.1 Background 7.2 Thruster types 7.2.1 Pulsed plasma thrusters and vacuum arc thrusters 7.2.1.1 Alternative PPT/VAT technologies 7.2.1.2 Lifetime and flight considerations 7.2.2 Magnetic nozzle thrusters 7.3 Current state of the art 7.3.1 Systems with flight heritage 7.3.2 Systems under development 7.4 Challenges and future References Further reading 4 - Related development 8 - Thrust measurement 8.1 Thrust stand 8.1.1 Introduction 8.1.2 The displacement method 8.1.2.1 Steady thrust 8.1.2.2 Impulsive thrust 8.1.3 The null-balance method 8.1.3.1 Theory 8.1.3.2 Controller design 8.1.3.3 Dynamic response 8.1.4 Thrust target 8.1.5 Elements 8.1.5.1 Materials 8.1.5.2 Hinges 8.1.5.3 Dampers 8.1.5.4 Displacement sensors 8.1.5.5 Electric actuators 8.1.5.6 Counterweight 8.1.6 Calibration 8.1.6.1 Steady thrust 8.1.6.2 Impulsive thrust 8.1.7 State-of-the-art 8.1.7.1 Sub μN and μNs measurement 8.1.7.2 Simultaneous evaluation of thrust and propellant consumption for solid propellant thruster 8.1.7.3 High-frequency thrust variation 8.1.7.4 Thrust vector 8.1.8 Summary References 9 - Nanoenergetic for micropropulsion 9.1 Introduction 9.2 Combustion equations of nanoenergetic propellant 9.3 Interior ballistic equations of microthruster 9.4 Microthrust balance 9.4.1 Vertical thrust balance 9.4.2 Horizontal thrust balance 9.5 Primary explosive propellant 9.6 Nanothermite propellant 9.7 Conclusion References 10 - Solar sail as propellant-less micropropulsion 10.1 Historical background 10.1.1 Advantages and applications 10.1.2 Historical development 10.2 Principle of operations 10.2.1 Transfer trajectories 10.2.2 Solar sail non-Keplerian orbits 10.2.3 Attitude control 10.2.4 Structural control 10.3 Solar sail in CubeSat 10.3.1 NanoSail-D1 10.3.2 NanoSail-D2 10.3.3 LightSail project 10.3.4 Under development project 10.4 Challenges and future 10.4.1 Orbital dynamics 10.4.2 Material technologies References 11 - Hydroxylammonium nitrate—the next generation green propellant 11.1 Historical development 11.2 Synthesis of hydroxylammonium nitrate 11.2.1 Titration 11.2.2 Electrodialysis 11.2.3 Hydrolysis of oxime 11.2.4 Synthesis analysis 11.3 Properties and safety evaluation 11.3.1 Physical properties, toxicity, and safety 11.3.2 Vibration frequencies of HAN 11.3.3 Detonation and autocatalysis 11.4 Catalytic combustion of HAN 11.4.1 Reaction mechanism 11.4.2 Development in catalyst 11.5 Challenges and future perspectives References Index A B C D E F G H I J K L M N O P Q R S T U V W X Back Cover