ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Solid-State Electrochemistry: Essential Course Notes and Solved Exercises

دانلود کتاب الکتروشیمی حالت جامد: یادداشت‌های درسی ضروری و تمرین‌های حل شده

Solid-State Electrochemistry: Essential Course Notes and Solved Exercises

مشخصات کتاب

Solid-State Electrochemistry: Essential Course Notes and Solved Exercises

ویرایش:  
نویسندگان: ,   
سری: Grenoble Sciences 
ISBN (شابک) : 9783030396589 
ناشر: Springer 
سال نشر: 2020 
تعداد صفحات: 341 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 13 مگابایت 

قیمت کتاب (تومان) : 32,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 13


در صورت تبدیل فایل کتاب Solid-State Electrochemistry: Essential Course Notes and Solved Exercises به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب الکتروشیمی حالت جامد: یادداشت‌های درسی ضروری و تمرین‌های حل شده نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Cover
Half Title
Solid-State Electrochemistry: Essential Course Notes and Solved Exercises
Copyright
Grenoble Sciences Series
Preface
Table of contents
Base quantities, units, and symbols from the international system (IS)
Physical-chemistry: Symbols and units
Acronyms and abbreviations used in this book
1. Description of ionic crystals
	Course notes
		1.1 – Definitions
			1.1.1 – The perfect crystal
			1.1.2 – The real crystal
			1.1.3 – Structure elements and effective charge
		1.2 – Reactions and equilibria
			1.2.1 – Atomic disorder and electronic disorder
			1.2.2 – Writing the reactions
			1.2.3 – Presence of foreign atoms
			1.2.4 – Equilibrium with the environment
		1.3 – Brouwer diagram
			1.3.1 – Equilibria
			1.3.2 – Electroneutrality relation and the Brouwer approximation
			1.3.3 – Diagram for MX2 crystal
			1.3.4 – Case of solid solution (MX2)1−x(DX)x
		1.4 – Stoichiometry and departure from stoichiometry
	Exercises
		Exercise 1.1 – Notation for structure elements and structure defects
		Exercise 1.2 – Notation for doping reactions
		Exercise 1.3 – Sitoneutrality and expression of chemical formulas
		Exercise 1.4 – Calculation of defect concentrations
		Exercise 1.5 – Doping strontium fluoride
		Exercise 1.6 – Variation of the concentration of structure defects in pure zirconium dioxide ZrO2 as a function of oxygen partial pressure
		Exercise 1.7 – The non-stoichiometry of iron monoxide
		Exercise 1.8 – Departure from stoichiometry of barium fluoride BaF2
		Exercise 1.9 – Crystallographic and thermodynamic study
of thorium dioxide ThO2
	Solutions to exercises
		Solution 1.1 – Notation for structure elements and structure defects
		Solution 1.2 – Notation for doping reactions
		Solution 1.3 – Sitoneutrality and notation for chemical formulas
		Solution 1.4 – Calculation of defect concentrations
		Solution 1.5 – Doping strontium fluoride
		Solution 1.6 – Variation of the concentration of structure defects in pure zirconium dioxide ZrO2 as a function of oxygen partial pressure
		Solution 1.7 – The non-stoichiometry of iron monoxide
		Solution 1.8 – Departure from stoichiometry of barium fluoride BaF2
		Solution 1.9 – Crystallographic and thermodynamic study 
of thorium dioxide ThO2
2. Methods and techniques
	Course notes
		2.1 – Complex impedance spectroscopy
			2.1.1 – Time domain: principal passive linear dipole devices in sinusoidal regime
			2.1.2 – Complex notation
			2.1.3 – Graphical representation of complex impedance
			2.1.4 – Other dipole devices
			2.1.5 – Physical meaning of complex impedance spectra
		2.2 – Methods to measure transport number
			2.2.1 – Electromotive force method
			2.2.2 – Using the results of total conductivity
			2.2.3 – Tubandt method
			2.2.4 – Dilatocoulometric method to measure cationic transport number
			2.2.5 – Electrochemical semipermeability
			2.2.6 – Blocking electrode method
	Exercises
		Exercise 2.1 – Determination of conductivity by four-electrode method
		Exercise 2.2 – Measurement of electric quantities by complex impedance spectroscopy
		Exercise 2.3 – Measurement of electronic conductivity in a mixed conductor
		Exercise 2.4 – Measurement of ionic conductivity in a mixed conductor
		Exercise 2.5 – Determination of cationic transport numberby dilatocoulometry
		Exercise 2.6 – Determination of cationic transport number in CaF2 by dilatocoulometry
		Exercise 2.7 – Electrochemical semipermeability
		Exercise 2.8 – Determination of transport number by electrochemical semipermeability
		Exercise 2.9 – Determination of conduction mode in α-AgI by Tubandt method
	Solutions to exercises
		Solution 2.1 – Determination of conductivity by four-electrode method
		Solution 2.2 – Measurement of electric quantities by complex impedance spectroscopy
		Solution 2.3 – Measurement of electronic conductivity in a mixed conductor
		Solution 2.4 – Measurement of ionic conductivity in a mixed conductor
		Solution 2.5 – Determination of cationic transport number by dilatocoulometry
		Solution 2.6 – Determination of cationic transport number in CaF2 by dilatocoulometry
		Solution 2.7 – Electrochemical semipermeability
		Solution 2.8 – Determination of transport number by electrochemical semipermeability
		Solution 2.9 – Determination of conduction mode in α-AgI by Tubandt method
3. Transport in ionic solids
	Course notes
		3.1 – Phenomenological approach to ionic transport
in ionic crystals
			3.1.1 – Electrochemical mobility and flux density
			3.1.2 – Electrical conductivity and transport number
		3.2 – Microscopic approach to ionic transport in crystals: Activated-hopping model
			3.2.1 – Electric mobility
			3.2.2 – Ionic conductivity
			3.2.3 – Conductivity and temperature
			3.2.4 – Conductivity and environment
			3.2.5 – Ionic conductivity and composition
			3.2.6 – Other parameters
		3.3 – Basic description of Wagner theory
	Exercises
		Exercise 3.1 – Influence of geometric factor
		Exercise 3.2 – Study of oxygen mobility in solid solutions (ThO2)1−x(YO1.5)x
		Exercise 3.3 – Study of electronic conductivity in solid solutions (CeO2)1−x(CaO)x
		Exercise 3.4 – Electronic transport number in a glass
		Exercise 3.5 – Electrical properties of potassium chloride KCl
		Exercise 3.6 – Application of Nernst-Einstein relation to LiCF3SO3
in poly(ethylene oxide) P(EO)
		Exercise 3.7 – Electrical conductivity as a function of composition
in (CeO2)1−x(YO1.5)x
		Exercise 3.8 – Conductivity of nickel oxide
		Exercise 3.9 – Ionic conductivity-activity relationship of glass modifier in oxide-based glasses
		Exercise 3.10 – Electrochemical coloration
		Exercise 3.11 – Oxygen diffusion in gadolinia-doped ceria
		Exercise 3.12 – Electrical conductivity of solid vitreous solution (SiO2)1−x(Na2O)x
		Exercise 3.13 – High-temperature protonic conductor SrZrO3
		Exercise 3.14 – Free-volume model
		Exercise 3.15 – Study of single-crystal calcium fluoride CaF2
in the presence of oxygen
		Exercise 3.16 – emf of a membrane crossed by an electrochemical semipermeability flux
		Exercise 3.17 – Determination of electronic conductivityby electrochemical semipermeability
	Solutions to exercises
		Solution 3.1 – Influence of geometric factor
		Solution 3.2 – Study of oxygen mobility in solid solutions (ThO2)1−x(YO1.5)x
		Solution 3.3 – Study of electronic conductivity in solid solutions (CeO2)1−x(CaO)x
		Solution 3.4 – Electronic transport number in a glass
		Solution 3.5 – Electrical properties of potassium chloride KCl
		Solution 3.6 – Application of Nernst-Einstein relation to LiCF3SO3
in poly(ethylene oxide) P(EO)
		Solution 3.7 – Electrical conductivity as a function of composition in (CeO2)1−x(YO1.5)x
		Solution 3.8 – Conductivity of nickel oxide
		Solution 3.9 –  Ionic conductivity-activity relationship of oxide modifier in oxide-based glasses
		Solution 3.10 – Electrochemical coloration
		Solution 3.11 – Oxygen diffusion in gadolinia-doped ceria
		Solution 3.12 – Electrical conductivity of solid vitreous solution (SiO2)1−x(Na2O)x
		Solution 3.13 – High-temperature protonic conductor SrZrO3
		Solution 3.14 – Free-volume model
		Solution 3.15 – Study of single-crystal calcium fluoride CaF2 
in the presence of oxygen
		Solution 3.16 – emf of membrane crossed by an electrochemical semipermeability flux
		Solution 3.17 – Determination of electronic conductivity by electrochemical semipermeability
4. Electrode reactions
	Course notesThermodynamics and electrochemical kinetics
		4.1 – Electrode thermodynamics
			4.1.1 – Electrode
			4.1.2 – Electrode potential
			4.1.3 – Electrode polarization
			4.1.4 – Electrode overpotential
			4.1.5 – Current density
		4.2 – Electrochemical kinetics
			4.2.1 – Review
			4.2.2 – Pure-charge-transfer regime (extreme case)
			4.2.3 – Mixed transfer-diffusion regime
			4.2.4 – Regime of pure diffusion kinetics (extreme case)
			4.2.5 – Regime of adsorption of gaseous species
	Exercises
		Exercise 4.1 – Oxygen-diffusion-limited electrode
		Exercise 4.2 – Study of oxygen-electrode reaction
		Exercise 4.3 – Overpotential in an oxygen electrochemical pump
		Exercise 4.4 – Determination of exchange current
		Exercise 4.5 – Reduction of water vapor at the M / YSZ interface with M = Pt, Ni
		Exercise 4.6 – Hydrogen oxidation at Ni / YSZ interface
	Solutions to exercises
		Solution 4.1 – Oxygen-diffusion-limited electrode
		Solution 4.2 – Study of oxygen-electrode reaction
		Solution 4.3 – Overpotential in an oxygen electrochemical pump
		Solution 4.4 – Determination of exchange current
		Solution 4.5 – Reduction of water vapor at the M / YSZ interface with M = Pt, Ni
		Solution 4.6 – Hydrogen oxidation at Ni / YSZ interface
5. Applications
	Course notes
		5.1 – Electrochemical sensors
			5.1.1 – Definition and characteristics
			5.1.2 – Potentiometric sensor for gas analysis
			5.1.3 – Amperometric sensor
			5.1.4 – Coulometric sensor
			5.1.5 – Conductometric sensor for gas analysis
		5.2 – Electrochemical generators
			5.2.1 – Definition and characteristics
			5.2.2 – Discharge and (re)charge of electrochemical generators
			5.2.3 – Primary batteries, fuel cells, and secondary batteries
	Exercises
		Exercise 5.1 – Determination of standard free enthalpy of formation for AgCl
		Exercise 5.2 – Measurement of thermodynamic quantities of metal fluorides
		Exercise 5.3 – Measurement of O2− ion activity in a molten salt
		Exercise 5.4 – Calculation of equilibrium constants for defect formation in Cu2O
		Exercise 5.5 – TiS2: insertion material
		Exercise 5.6 – Chlorine sensor based on doped strontium chloride
		Exercise 5.7 – CO2 sensor (a)
		Exercise 5.8 – CO2 sensor (b)
		Exercise 5.9 – Sulfur oxide sensor
		Exercise 5.10 – Oxygen semiconductor sensor
		Exercise 5.11 – Amperometric oxygen sensor
		Exercise 5.12 – Coulometric oxygen sensor
		Exercise 5.13 – Nitrogen oxide sensor
		Exercise 5.14 – The sodium-sulfur battery
		Exercise 5.15 – General information on fuel cells
		Exercise 5.16 – Solid oxide fuel cell (SOFC)
		Exercise 5.17 – Use of hydrocarbons in SOFCs
		Exercise 5.18 – Thermodynamic study of methane reforming in SOFC
		Exercise 5.19 – Electrochemical integrator
	Solutions to exercises
		Solution 5.1 – Determination of standard free enthalpy of formation for AgCl
		Solution 5.2 – Measurement of thermodynamic quantities of metal fluorides
		Solution 5.3 – Measurement of O2− ion activity in a molten salt
		Solution 5.4 – Calculation of equilibrium constants for defect formation in Cu2O
		Solution 5.5 – TiS2: insertion material
		Solution 5.6 – Chlorine sensor based on doped strontium chloride
		Solution 5.7 – CO2 sensor (a)
		Solution 5.8 – CO2 sensor (b)
		Solution 5.9 – Sulfur oxide sensor
		Solution 5.10 – Oxygen semiconductor sensor
		Solution 5.11 – Amperometric oxygen sensor
		Solution 5.12 – Coulometric oxygen sensor
		Solution 5.13 – Nitrogen oxide sensor
		Solution 5.14 – The sodium-sulfur battery
		Solution 5.15 – General information on fuel cells
		Solution 5.16 – Solid oxide fuel cell (SOFC)
		Solution 5.17 – Use of hydrocarbons in SOFCs
		Solution 5.18 – Thermodynamic study of methane reforming in SOFC
		Solution 5.19 – Electrochemical integrator
Appendix – Fick’s laws of diffusion
Bibliography
Glossary
Index




نظرات کاربران