دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Hammou A., Georges S. سری: Grenoble Sciences ISBN (شابک) : 9783030396589 ناشر: Springer سال نشر: 2020 تعداد صفحات: 341 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 13 مگابایت
در صورت تبدیل فایل کتاب Solid-State Electrochemistry: Essential Course Notes and Solved Exercises به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب الکتروشیمی حالت جامد: یادداشتهای درسی ضروری و تمرینهای حل شده نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Half Title Solid-State Electrochemistry: Essential Course Notes and Solved Exercises Copyright Grenoble Sciences Series Preface Table of contents Base quantities, units, and symbols from the international system (IS) Physical-chemistry: Symbols and units Acronyms and abbreviations used in this book 1. Description of ionic crystals Course notes 1.1 – Definitions 1.1.1 – The perfect crystal 1.1.2 – The real crystal 1.1.3 – Structure elements and effective charge 1.2 – Reactions and equilibria 1.2.1 – Atomic disorder and electronic disorder 1.2.2 – Writing the reactions 1.2.3 – Presence of foreign atoms 1.2.4 – Equilibrium with the environment 1.3 – Brouwer diagram 1.3.1 – Equilibria 1.3.2 – Electroneutrality relation and the Brouwer approximation 1.3.3 – Diagram for MX2 crystal 1.3.4 – Case of solid solution (MX2)1−x(DX)x 1.4 – Stoichiometry and departure from stoichiometry Exercises Exercise 1.1 – Notation for structure elements and structure defects Exercise 1.2 – Notation for doping reactions Exercise 1.3 – Sitoneutrality and expression of chemical formulas Exercise 1.4 – Calculation of defect concentrations Exercise 1.5 – Doping strontium fluoride Exercise 1.6 – Variation of the concentration of structure defects in pure zirconium dioxide ZrO2 as a function of oxygen partial pressure Exercise 1.7 – The non-stoichiometry of iron monoxide Exercise 1.8 – Departure from stoichiometry of barium fluoride BaF2 Exercise 1.9 – Crystallographic and thermodynamic study of thorium dioxide ThO2 Solutions to exercises Solution 1.1 – Notation for structure elements and structure defects Solution 1.2 – Notation for doping reactions Solution 1.3 – Sitoneutrality and notation for chemical formulas Solution 1.4 – Calculation of defect concentrations Solution 1.5 – Doping strontium fluoride Solution 1.6 – Variation of the concentration of structure defects in pure zirconium dioxide ZrO2 as a function of oxygen partial pressure Solution 1.7 – The non-stoichiometry of iron monoxide Solution 1.8 – Departure from stoichiometry of barium fluoride BaF2 Solution 1.9 – Crystallographic and thermodynamic study of thorium dioxide ThO2 2. Methods and techniques Course notes 2.1 – Complex impedance spectroscopy 2.1.1 – Time domain: principal passive linear dipole devices in sinusoidal regime 2.1.2 – Complex notation 2.1.3 – Graphical representation of complex impedance 2.1.4 – Other dipole devices 2.1.5 – Physical meaning of complex impedance spectra 2.2 – Methods to measure transport number 2.2.1 – Electromotive force method 2.2.2 – Using the results of total conductivity 2.2.3 – Tubandt method 2.2.4 – Dilatocoulometric method to measure cationic transport number 2.2.5 – Electrochemical semipermeability 2.2.6 – Blocking electrode method Exercises Exercise 2.1 – Determination of conductivity by four-electrode method Exercise 2.2 – Measurement of electric quantities by complex impedance spectroscopy Exercise 2.3 – Measurement of electronic conductivity in a mixed conductor Exercise 2.4 – Measurement of ionic conductivity in a mixed conductor Exercise 2.5 – Determination of cationic transport numberby dilatocoulometry Exercise 2.6 – Determination of cationic transport number in CaF2 by dilatocoulometry Exercise 2.7 – Electrochemical semipermeability Exercise 2.8 – Determination of transport number by electrochemical semipermeability Exercise 2.9 – Determination of conduction mode in α-AgI by Tubandt method Solutions to exercises Solution 2.1 – Determination of conductivity by four-electrode method Solution 2.2 – Measurement of electric quantities by complex impedance spectroscopy Solution 2.3 – Measurement of electronic conductivity in a mixed conductor Solution 2.4 – Measurement of ionic conductivity in a mixed conductor Solution 2.5 – Determination of cationic transport number by dilatocoulometry Solution 2.6 – Determination of cationic transport number in CaF2 by dilatocoulometry Solution 2.7 – Electrochemical semipermeability Solution 2.8 – Determination of transport number by electrochemical semipermeability Solution 2.9 – Determination of conduction mode in α-AgI by Tubandt method 3. Transport in ionic solids Course notes 3.1 – Phenomenological approach to ionic transport in ionic crystals 3.1.1 – Electrochemical mobility and flux density 3.1.2 – Electrical conductivity and transport number 3.2 – Microscopic approach to ionic transport in crystals: Activated-hopping model 3.2.1 – Electric mobility 3.2.2 – Ionic conductivity 3.2.3 – Conductivity and temperature 3.2.4 – Conductivity and environment 3.2.5 – Ionic conductivity and composition 3.2.6 – Other parameters 3.3 – Basic description of Wagner theory Exercises Exercise 3.1 – Influence of geometric factor Exercise 3.2 – Study of oxygen mobility in solid solutions (ThO2)1−x(YO1.5)x Exercise 3.3 – Study of electronic conductivity in solid solutions (CeO2)1−x(CaO)x Exercise 3.4 – Electronic transport number in a glass Exercise 3.5 – Electrical properties of potassium chloride KCl Exercise 3.6 – Application of Nernst-Einstein relation to LiCF3SO3 in poly(ethylene oxide) P(EO) Exercise 3.7 – Electrical conductivity as a function of composition in (CeO2)1−x(YO1.5)x Exercise 3.8 – Conductivity of nickel oxide Exercise 3.9 – Ionic conductivity-activity relationship of glass modifier in oxide-based glasses Exercise 3.10 – Electrochemical coloration Exercise 3.11 – Oxygen diffusion in gadolinia-doped ceria Exercise 3.12 – Electrical conductivity of solid vitreous solution (SiO2)1−x(Na2O)x Exercise 3.13 – High-temperature protonic conductor SrZrO3 Exercise 3.14 – Free-volume model Exercise 3.15 – Study of single-crystal calcium fluoride CaF2 in the presence of oxygen Exercise 3.16 – emf of a membrane crossed by an electrochemical semipermeability flux Exercise 3.17 – Determination of electronic conductivityby electrochemical semipermeability Solutions to exercises Solution 3.1 – Influence of geometric factor Solution 3.2 – Study of oxygen mobility in solid solutions (ThO2)1−x(YO1.5)x Solution 3.3 – Study of electronic conductivity in solid solutions (CeO2)1−x(CaO)x Solution 3.4 – Electronic transport number in a glass Solution 3.5 – Electrical properties of potassium chloride KCl Solution 3.6 – Application of Nernst-Einstein relation to LiCF3SO3 in poly(ethylene oxide) P(EO) Solution 3.7 – Electrical conductivity as a function of composition in (CeO2)1−x(YO1.5)x Solution 3.8 – Conductivity of nickel oxide Solution 3.9 – Ionic conductivity-activity relationship of oxide modifier in oxide-based glasses Solution 3.10 – Electrochemical coloration Solution 3.11 – Oxygen diffusion in gadolinia-doped ceria Solution 3.12 – Electrical conductivity of solid vitreous solution (SiO2)1−x(Na2O)x Solution 3.13 – High-temperature protonic conductor SrZrO3 Solution 3.14 – Free-volume model Solution 3.15 – Study of single-crystal calcium fluoride CaF2 in the presence of oxygen Solution 3.16 – emf of membrane crossed by an electrochemical semipermeability flux Solution 3.17 – Determination of electronic conductivity by electrochemical semipermeability 4. Electrode reactions Course notesThermodynamics and electrochemical kinetics 4.1 – Electrode thermodynamics 4.1.1 – Electrode 4.1.2 – Electrode potential 4.1.3 – Electrode polarization 4.1.4 – Electrode overpotential 4.1.5 – Current density 4.2 – Electrochemical kinetics 4.2.1 – Review 4.2.2 – Pure-charge-transfer regime (extreme case) 4.2.3 – Mixed transfer-diffusion regime 4.2.4 – Regime of pure diffusion kinetics (extreme case) 4.2.5 – Regime of adsorption of gaseous species Exercises Exercise 4.1 – Oxygen-diffusion-limited electrode Exercise 4.2 – Study of oxygen-electrode reaction Exercise 4.3 – Overpotential in an oxygen electrochemical pump Exercise 4.4 – Determination of exchange current Exercise 4.5 – Reduction of water vapor at the M / YSZ interface with M = Pt, Ni Exercise 4.6 – Hydrogen oxidation at Ni / YSZ interface Solutions to exercises Solution 4.1 – Oxygen-diffusion-limited electrode Solution 4.2 – Study of oxygen-electrode reaction Solution 4.3 – Overpotential in an oxygen electrochemical pump Solution 4.4 – Determination of exchange current Solution 4.5 – Reduction of water vapor at the M / YSZ interface with M = Pt, Ni Solution 4.6 – Hydrogen oxidation at Ni / YSZ interface 5. Applications Course notes 5.1 – Electrochemical sensors 5.1.1 – Definition and characteristics 5.1.2 – Potentiometric sensor for gas analysis 5.1.3 – Amperometric sensor 5.1.4 – Coulometric sensor 5.1.5 – Conductometric sensor for gas analysis 5.2 – Electrochemical generators 5.2.1 – Definition and characteristics 5.2.2 – Discharge and (re)charge of electrochemical generators 5.2.3 – Primary batteries, fuel cells, and secondary batteries Exercises Exercise 5.1 – Determination of standard free enthalpy of formation for AgCl Exercise 5.2 – Measurement of thermodynamic quantities of metal fluorides Exercise 5.3 – Measurement of O2− ion activity in a molten salt Exercise 5.4 – Calculation of equilibrium constants for defect formation in Cu2O Exercise 5.5 – TiS2: insertion material Exercise 5.6 – Chlorine sensor based on doped strontium chloride Exercise 5.7 – CO2 sensor (a) Exercise 5.8 – CO2 sensor (b) Exercise 5.9 – Sulfur oxide sensor Exercise 5.10 – Oxygen semiconductor sensor Exercise 5.11 – Amperometric oxygen sensor Exercise 5.12 – Coulometric oxygen sensor Exercise 5.13 – Nitrogen oxide sensor Exercise 5.14 – The sodium-sulfur battery Exercise 5.15 – General information on fuel cells Exercise 5.16 – Solid oxide fuel cell (SOFC) Exercise 5.17 – Use of hydrocarbons in SOFCs Exercise 5.18 – Thermodynamic study of methane reforming in SOFC Exercise 5.19 – Electrochemical integrator Solutions to exercises Solution 5.1 – Determination of standard free enthalpy of formation for AgCl Solution 5.2 – Measurement of thermodynamic quantities of metal fluorides Solution 5.3 – Measurement of O2− ion activity in a molten salt Solution 5.4 – Calculation of equilibrium constants for defect formation in Cu2O Solution 5.5 – TiS2: insertion material Solution 5.6 – Chlorine sensor based on doped strontium chloride Solution 5.7 – CO2 sensor (a) Solution 5.8 – CO2 sensor (b) Solution 5.9 – Sulfur oxide sensor Solution 5.10 – Oxygen semiconductor sensor Solution 5.11 – Amperometric oxygen sensor Solution 5.12 – Coulometric oxygen sensor Solution 5.13 – Nitrogen oxide sensor Solution 5.14 – The sodium-sulfur battery Solution 5.15 – General information on fuel cells Solution 5.16 – Solid oxide fuel cell (SOFC) Solution 5.17 – Use of hydrocarbons in SOFCs Solution 5.18 – Thermodynamic study of methane reforming in SOFC Solution 5.19 – Electrochemical integrator Appendix – Fick’s laws of diffusion Bibliography Glossary Index