دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Moghtada Mobedi, Kamel Hooman, Wen-Quan Tao سری: ISBN (شابک) : 1032100184, 9781032100180 ناشر: CRC Press سال نشر: 2022 تعداد صفحات: 359 [361] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 24 Mb
در صورت تبدیل فایل کتاب Solid-Liquid Thermal Energy Storage: Modeling and Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب ذخیرهسازی انرژی حرارتی جامد-مایع: مدلسازی و کاربردها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
جامد–ذخیرهسازی انرژی حرارتی مایع: مدلسازی و کاربردها یک نمای کلی از ذخیرهسازی حرارتی تغییر فاز جامد-مایع ارائه میدهد. فصل ها توسط متخصصانی از دانشگاه و صنعت نوشته شده است. با استفاده از مطالعات اخیر در مورد بهبود، مدلسازی و کاربردهای جدید این سیستمها، این کتاب راهحلهای نوآورانهای را برای هر گونه اشکال احتمالی مورد بحث قرار میدهد.
این کتاب:
این کتاب مرجعی برای مهندسان و متخصصان صنعت است که در زمینه استفاده از سیستمهای انرژی تجدیدپذیر، ذخیرهسازی انرژی، سیستمهای گرمایش ساختمانها فعالیت میکنند. ، طراحی پایداری و غیره. همچنین می تواند برای دانشجویان فارغ التحصیل که دوره های انتقال حرارت، مهندسی انرژی، مواد پیشرفته و سیستم های گرمایش را می گذرانند مفید باشد.
Solid–Liquid Thermal Energy Storage: Modeling and Applications provides a comprehensive overview of solid–liquid phase change thermal storage. Chapters are written by specialists from both academia and industry. Using recent studies on the improvement, modeling, and new applications of these systems, the book discusses innovative solutions for any potential drawbacks.
This book:
This book is a reference for engineers and industry professionals involved in the use of renewable energy systems, energy storage, heating systems for buildings, sustainability design, etc. It can also benefit graduate students taking courses in heat transfer, energy engineering, advanced materials, and heating systems.
Cover Half Title Title Page Copyright Page Table of Contents Preface Editors Contributors Chapter 1 An Introduction to Solid–Liquid Thermal Energy Storage Systems 1.1 Introduction 1.2 Classification of Thermal Energy Storage 1.3 Difficulties Associated with Solid–Liquid Thermal Storage 1.3.1 Challenges with PCM 1.3.2 System Design Challenges 1.4 Solid–Liquid Thermal Energy Storage Applications 1.5 Conclusion Acknowledgment References Chapter 2 Solid–Liquid Phase Change Materials for Energy Storage: Opportunities and Challenges 2.1 Introduction: Background and Motivation 2.2 Working Principle 2.3 Phase Change Materials and Classifications 2.4 Challenges 2.4.1 Segregation of Salt Hydrates 2.4.2 Supercooling 2.4.3 Measurement of Thermophysical Properties 2.4.4 Long-Term Stability and Material Compatibility Determination 2.4.5 Polymorphism 2.4.6 Determination of Crystallization Kinetics and Kinetic Modeling 2.4.7 Thermal Conductivity Enhancement 2.4.8 Identification of Novel PCM 2.5 Conclusions and Outlook References Chapter 3 Experimental Techniques and Challenges in Evaluating the Performance of PCMs 3.1 Introduction 3.2 Fundamental Studies 3.3 Applied Studies 3.3.1 Solar Applications 3.3.2 Building Applications: Active Systems 3.3.3 Building Applications: Passive Systems 3.3.4 Thermal Management of Electrical Batteries 3.3.5 Thermal Management of Electronic Devices References Chapter 4 Design Criteria for Advanced Latent Heat Thermal Energy Storage Systems 4.1 Introduction 4.2 Geometric Impact on Melting 4.2.1 Rectangular Enclosures 4.2.1.1 Top Heating 4.2.1.2 Lateral Heating 4.2.1.3 Basal Heating 4.2.1.4 Inclined Enclosure 4.2.1.5 Start Up 4.2.2 Tubular, Cylindrical and Spherical Enclosures 4.3 Melting with Fin Inserts 4.3.1 “Short” Lumped Fins 4.3.2 “Long” Semi-Infinite Fins 4.4 Conclusion References Chapter 5 Multi-Scale Modeling in Solid–Liquid Phase Change Conjugate Heat Transfer for Thermal Energy Storage Applications 5.1 Introduction 5.2 Multi-Scale Numerical Methods and Coupling Schemes 5.2.1 Molecular Dynamics Simulation 5.2.1.1 Common Used Force Field 5.2.2 Lattice Boltzmann Method 5.2.2.1 Governing Equations for Solid–Liquid Phase Change Conjugate Heat Transfer 5.2.2.2 MRT Enthalpy-Based LBM in 2D Cartesian Coordinate 5.2.2.3 MRT Enthalpy-Based LBM in 3D Cartesian Coordinate 5.2.2.4 Numerical Reconstruction of Porous Media 5.2.2.5 Graphic Processor Units (GPUs) Computing 5.2.3 Finite Volume Method 5.2.4 LBM-FVM Coupling Schemes 5.3 Applications of Multi-Scale Modeling to Latent Heat Thermal Energy Storage 5.3.1 Thermophysical Properties of PCMs 5.3.1.1 Specific Heat Capacity and Melting Enthalpy 5.3.2 Pore-Scale Modeling of LHS System 5.3.3 Representative Elementary Volume Scale Modeling of LHS System 5.4 Conclusions Acknowledgments References Chapter 6 Latent Heat of Fusion and Applications of Silicon-Metal Alloys Introduction 6.2 Application of Silicon and Silicon-Metal Alloys 6.3 Experimental Work 6.3.1 Materials and Sample Preparation 6.3.2 Measurement Methods 6.3.3 Results 6.3.3.1 Silicon 6.3.3.2 Silicon Boron 6.3.3.3 Silicon-Titanium 6.3.3.4 Silicon-Chromium 6.3.3.5 Silicon Iron 6.3.3.6 Silicon Cobalt 6.3.3.7 Silicon-Nickel 6.3.3.8 Silicon-Copper 6.4 Conclusion Acknowledgement References Chapter 7 Heat Transfer Augmentation of Latent Heat Thermal Storage Systems Employing Extended Surfaces and Heat Pipes 7.1 Introduction 7.2 Heat Transfer Enhancement Using Extended Surfaces 7.2.1 Cylindrical Finned LHTS Containers 7.2.2 Rectangular Finned LHTS Containers 7.2.3 Spherical Finned LHTS Containers 7.3 Effect of Container Orientation 7.4 Heat Transfer Enhancement Using Heat Pipes 7.5 Conclusion References Chapter 8 Fin-Metal Foam Hybrid Structure for Enhancing Solid–Liquid Phase Change 8.1 Introduction 8.1.1 Thermal Energy Storage for Solar Thermal Utilization 8.1.2 Shell-and-Tube Latent Heat Thermal Energy Storage System 8.1.3 Fin-Type Shell-and-Tube Thermal Energy Storage Tube 8.1.4 Metal Foam Type Shell-and-Tube Thermal Energy Storage Tube 8.1.5 Fin-Metal Foam Hybrid Structure 8.1.6 Chapter Content 8.2 Experimental Measurement 8.2.1 Thermal Energy Storage Tubes 8.2.2 Test Setup 8.3 Complete Melting and Solidification Time 8.4 Solid–Liquid Phase Interface 8.5 Temperature Response 8.6 Uniformity of Temperature Field 8.7 Energy Storage Density 8.8 Concluding Remarks Acknowledgment References Chapter 9 Micro- and Nano-Encapsulated PCM Fluids 9.1 Introduction: Background and Driving Forces 9.2 Encapsulated PCMs 9.2.1 Encapsulation’s Benefits and Drawbacks 9.3 Encapsulated PCM Fluids 9.3.1 Concept of Phase Change Slurries 9.4 Encapsulated PCM Slurry (EPCMS) Primary Characteristics 9.4.1 Subcooling, Solidification, and Hysteresis 9.4.2 Stability and Durability 9.4.3 Density 9.4.4 Specific Heat Capacity 9.4.5 Thermal Conductivity 9.4.6 Hydrodynamic Characteristics 9.4.6.1 Viscosity 9.4.6.2 Pressure Drop and Pumping Power 9.5 Applications of EPCMS 9.5.1 Pipe Flow 9.5.2 Channel Flow 9.5.3 Heat Exchangers 9.5.4 Heat Pipes 9.5.5 Air Conditioning 9.5.6 Combining Solar Thermal and Photovoltaic (PV/T) Collectors 9.5.7 Solar Collectors 9.6 Future Directions References Chapter 10 Structural Classification of PCM Heat Exchangers 10.1 Introduction 10.2 Definition of a PCM Heat Exchanger 10.3 Reported Reviews on PCM Heat Exchangers 10.4 Structural Classification of PCM Heat Exchanger 10.4.1 Working Fluid-Embedded PCM Heat Exchangers 10.4.1.1 Shell and Tube PCM Heat Exchanger 10.4.1.2 Double-Plate Heat Exchanger 10.4.2 PCM-Embedded-Type PCM Heat Exchanger 10.4.2.1 Shell and Tube Type PCM Heat Exchangers 10.4.2.2 Cross Flow 10.4.2.3 Capsule PCM Packed Bed 10.4.2.4 Triplex 10.4.2.5 Multi-Domains 10.5 Result and Discussion 10.5.1 Names of PCM Heat Exchangers 10.5.2 Comparison of the Heat Exchangers 10.6 Conclusion References 10.A Appendix Chapter 11 Cool Thermal Energy Storage: Water and Ice to Alternative Phase Change Materials 11.1 Introduction 11.2 Types of Ice-Based Thermal Energy Storage Systems 11.2.1 Static Systems 11.2.2 Dynamic Systems 11.2.3 Static Versus Dynamic Systems 11.3 Phase Change Materials 11.4 PCM-Based Thermal Energy Storage Systems 11.4.1 Commercial-Scale PCM TES Systems 11.5 Future Outlook of Implementation of PCM TES Systems References Chapter 12 Evolution of Melt Path in a Horizontal Shell and Tube Latent Heat Storage System for Concentrated Solar Power Plants 12.1 Introduction: Background 12.2 PCM System 12.3 Numerical Modelling 12.3.1 Geometry and Grid 12.3.2 Thermo-hydraulic Modelling 12.3.3 Thermomechanical Modelling 12.4 Results and Discussion 12.4.1 Thermo-hydraulic Analysis 12.4.2 Thermomechanical Analysis 12.4.3 Thermoelastic Analysis 12.5 Conclusion Acknowledgements References Chapter 13 Sensible and Latent Thermal Energy Storage in Parallel Channels 13.1 Introduction 13.2 Thermal Energy Storage System Classification 13.3 Literature Review 13.4 Geometry Configurations and Mathematical Modeling 13.5 Numerical Procedure 13.6 Results 13.6.1 Sensible Heat Thermal Energy Storage System (SHTES) 13.6.2 Latent Heat Thermal Energy Storage System (LHTES) References Chapter 14 Recent Progress of Phase Change Materials and a Novel Application to Cylindrical Lithium-Ion Battery Thermal Management 14.1 Introduction 14.2 Phase Change Materials (PCMs) 14.2.1 PCM Heat Transfer Enhancement Methods 14.2.2 Application of PCMs to BTMS 14.3 A Novel Application of PCM to TMS of Cylindrical Battery Module 14.3.1 Materials Preparation and Characterization 14.3.2 Experimental 14.3.3 Experimental Results and Discussion 14.3.3.1 The Electrical-Thermal Performance of BM-0 14.3.3.2 Effects of the PCM Tube and/or Heat Pipe 14.3.3.3 Effects of the Ambient Temperature 14.3.3.4 Effects of the Discharge C-Rate 14.4 Conclusions Acknowledgments References Chapter 15 Phase Change Material-Based Thermal Energy Storage for Cold Chain Applications – From Materials to Systems 15.1 Introduction 15.2 PCM-Based Cold Energy Storage Materials 15.2.1 Desirable Properties and Classification of PCMs for Cold Energy Storage 15.2.2 Performance Enhancement of PCMs 15.3 PCM-Based Cold Energy Storage Devices 15.3.1 Modelling of PCM-Based Cold Energy Storage Devices 15.3.2 Experimental Studies of PCM-Based Cold Energy Storage Devices 15.4 Applications of the PCM-Based Cold Energy Storage Devices through Integration 15.4.1 PCM-Based Cold Storage for Warehouse Applications 15.4.2 PCM-Based Cold Energy Storage for Cold Chain Transportation Applications 15.4.3 PCM-Based Cold Energy Storage Technology for Vaccine Storage and Transport 15.4.4 PCM-Based Cold Energy Storage for Ice Core Storage and Transport 15.5 Concluding Remarks Acknowledgements References Index