دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Olayinka I. Ogunsola, Isaac K. Gamwo سری: ISBN (شابک) : 0367893282, 9780367893286 ناشر: CRC Press سال نشر: 2022 تعداد صفحات: 302 [303] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 19 Mb
در صورت تبدیل فایل کتاب Solid–Liquid Separation Technologies: Applications for Produced Water به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب فن آوری های جداسازی جامد-مایع: کاربردها برای آب تولید شده نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب تحقیقات و پیشرفتهای اخیر در فناوریهای مختلف جداسازی جامد-مایع و برخی کاربردها برای تصفیه آب تولید شده را ارائه میکند. اصول اساسی و اهمیت آب تولیدی در بخشهای صنعتی عمده را پوشش میدهد و فناوریهای جداسازی جامد-مایع را با هم مقایسه میکند.
علاوه بر این، این کتاب
با پوشش جامع آن این کتاب یک مرجع ضروری برای محققان شیمی، دانشمندان و مهندسان صنعت، دانشگاه و آزمایشگاه های حرفه ای است. همچنین منبع مهمی برای دانشجویان کارشناسی ارشد و پیشرفته است که جداسازی جامد و مایع را مطالعه می کنند.
This book presents recent research and advances in various solid–liquid separation technologies and some applications for treating produced water. It covers fundamental principles and the importance of produced water in major industrial sectors and compares solid–liquid separation technologies.
In addition, this book
With its comprehensive coverage, this book is an essential reference for chemical researchers, scientists, and engineers in industry, academia, and professional laboratories. It is also an important resource for graduate and advanced undergraduate students studying solid–liquid separations.
Cover Half Title Title Page Copyright Page Table of Contents Preface Editors Contributors Chapter 1 Produced Water Treatment Technologies: An Overview 1.1 Introduction 1.2 Characteristics of Produced Water 1.3 Treatment Methods for Produced Water 1.3.1 Hydrocyclones 1.3.2 API Separator and Corrugated Plate Separator/Interceptor 1.3.3 Media Filtration 1.3.4 Activated Carbon Adsorption 1.3.5 Gas Flotation 1.3.6 Membrane Filtration 1.3.7 Membrane Distillation 1.3.8 Thermal Separators 1.3.9 Chemical Precipitation 1.3.10 Ion Exchange 1.3.11 Advanced Oxidation Processes 1.3.12 Electrodialysis 1.3.13 Other Electrochemical Processes 1.4 Conclusions References Chapter 2 Produced Water Overview: Characteristics, Treatment, and Beneficial Uses 2.1 Introduction 2.2 Chemical, Physical, and Biological Characteristics and Properties of Produced Water 2.3 Types of Treatment Technologies 2.3.1 Pretreatment Technologies 2.3.2 Desalination Technologies 2.4 Beneficial Use of Treated Produced Water 2.5 Policy and Regulation Framework for Beneficial Use of Treated Produced Water 2.6 Produced Water Stakeholders 2.7 Summary References Chapter 3 Standard Water Treatment Techniques and Their Applicability to Oil and Gas Produced Brines of Varied Compositions 3.1 Introduction: Managing Produced Brine in the United States 3.2 Brine Compositions 3.3 Standard Wastewater Treatment Techniques 3.3.1 Brine Pretreatment 3.3.1.1 Removal of Large Particles via Coagulation and Flocculation 3.3.1.2 Flotation 3.3.1.3 Disinfection 3.3.1.4 Media, Micro, and Ultrafiltration 3.3.1.5 Adsorption 3.3.1.6 Removal of Scale-Forming Ions 3.3.1.7 Other Pretreatment Steps (Silica and Boron) 3.3.2 Water Recovery via Brine Concentration 3.3.2.1 Brine Thermodynamics 3.3.2.2 Non-membrane, Thermally Driven Evaporative Processes 3.3.2.3 Non-membrane, Electrically Driven Evaporative Processes 3.3.2.4 Membrane, Electrically Driven, Non-Evaporative Processes 3.3.2.5 Crystallizers 3.4 Example End-Use Application s 3.5 Conclusions References Chapter 4 Transport of Major Elements in Produced Water through Reactive Porous Media 4.1 Introduction 4.2 Materials 4.2.1 Produced Water 4.2.2 Granular Materials 4.3 Set-up and Experimental Procedure 4.4 Modeling 4.4.1 Geochemical Model 4.4.2 Transport Model 4.5 Results from Transport Tests 4.5.1 Tests Using Natural Produced Water 4.5.2 Tests Using Synthetic Produced Water 4.6 Modeling and Simulations of Transport through MCS 4.7 Conclusions Bibliography Chapter 5 Prediction of Barium Sulfate Deposition in Petroleum and Hydrothermal Systems 5.1 Mineral Deposition in Petroleum and Hydrothermal Systems 5.2 Solubility Product Constants and Scaling Tendencies 5.3 Speciation Models and Predominance Diagrams 5.4 Barium Sulfate Solubility Measurements at Elevated Temperatures and Pressures 5.5 Thermodynamic Model for Aqueous Species at High Temperatures and Pressures 5.6 Barite Solubility Models for High Temperatures and Pressures 5.7 Section Summary 5.8 Nomenclature References Chapter 6 Membrane Technologies and Applications for Produced Water Treatment 6.1 Introduction 6.2 Pressure-Driven Membrane Separation 6.2.1 MF and UF Membranes 6.2.2 NF and RO Membranes 6.3 Osmotically Driven Membrane Separation 6.3.1 Fundamentals 6.3.2 Draw Solutes Development for FO Process 6.3.3 FO Applications to Produced Water Treatment 6.4 Thermally Driven Membranes 6.5 Conclusion and Future Outlook References Chapter 7 Assessment of Oil Fouling by Oil–Membrane Interaction Energy Analysis 7.1 Introduction 7.2 DLVO and XDLVO Interaction Energy 7.2.1 LW Interaction 7.2.2 EL Interaction 7.2.3 AB Interaction 7.2.4 Surface Tension Component, Contact Angle, and Zeta Potential 7.3 Usage in Nonoil Membrane Fouling 7.4 Usage in Oil Membrane Fouling 7.4.1 Fouling Studies 7.4.2 Antifouling Validation of Modified Membrane 7.4.3 Consideration for Future Research 7.5 Conclusion References Chapter 8 Enrichment of Rare Earth Element (REE) Minerals from Different Sources in the Coal Value Chain by Froth Flotation 8.1 Introduction 8.1.1 Factors Influencing Flotation 8.1.2 Floatability 8.1.3 Mechanics of Droplet Capture 8.1.4 Hydrodynamics in Flotation 8.1.5 Flotation Equipment 8.1.6 Flotation in Rare Earth Elements Production 8.2 Experimental 8.2.1 Materials, Sample Preparation, and Flotation Chemicals 8.2.2 Flotation Experiments 8.2.3 Analytical Methods 8.3 Results and Discussion 8.3.1 Enrichment of REEs 8.3.2 Selectivity of REEs Groups 8.3.3 Distribution of REEs in Organic/Inorganic Phases 8.3.4 Effect of pH in Flotation 8.4 Conclusion Acknowledgment Disclaimer References Chapter 9 Recent Advances for Solid–Liquid Separation by Crystallization 9.1 Introduction 9.2 Basic Crystallization Concepts 9.2.1 Solid–Liquid Equilibrium and Solubility 9.2.2 Supersaturation and Supercooling 9.3 Crystallizers 9.4 Basic Crystallization Process Design 9.5 Conventional Crystallization Methods 9.5.1 Evaporation Pond 9.5.2 Freeze-Thaw Evaporation 9.5.3 Mechanical Evaporation 9.5.4 Chemical Precipitation 9.6 Unconventional Crystallization Technologies 9.6.1 Recovery of Salts from Produced Water by Precipitation 9.6.2 Eutectic Freeze Crystallization 9.6.3 Membrane Crystallization 9.7 Conclusion and Outlook References Chapter 10 Magnetic Separation of Micro- and Nanoparticles for Water Treatment Processes 10.1 Magnetic Nanomaterials: Synthesis, Properties, and Applications in Water Treatment 10.2 Principles of Magnetic Separations 10.3 Batch Magnetic Separators 10.4 Continuous-Flow Separators 10.5 Conclusions Acknowledgments References Chapter 11 Influence of Colloids on Mineralization in Unconventional Oil and Gas Reservoirs and Wellbores: A Case Study with the Marcellus Shale 11.1 Use of Produced Water for Hydraulic Fracturing of Unconventional Oil and Gas Reservoirs 11.2 Flow Restriction in Unconventional Oil and Gas Wells and Reservoirs 11.2.1 Aboveground Piping, Pumps, and Filtration Systems Impacted by Mineral Scale Precipitation 11.2.2 Wellbore Zones Impacted by Mineral Scale Precipitation 11.2.3 Reservoir Zones Impacted by Mineral Scale Precipitation 11.3 Case Study: Effect of Sulfate and Scale Inhibitor on Mineral Scale Development – Marcellus Shale, Northwestern West Virginia, USA 11.3.1 Experimental Evaluation for Scenario 1: Blending Monongahela River Water with Marcellus Produced Water 11.3.1.1 Field Sampling and Experimental Methods 11.3.1.2 Water Analysis and Experimental Results 11.3.2 Application of Chemical Process and Reaction Path Modeling to Characterize the Potential for Mineral Scale Development in Unconventional Oil and Gas Systems 11.3.2.1 Predictive Modeling Approach 11.3.2.2 Predictive Modeling Resulths 11.3.2.3 Discussion – Mineral Precipitation Predicted in the Modeled Systems 11.4 Conclusions – What to Consider When Designing HFF Base Water Pretreatment Acknowledgments and Disclaimer References Chapter 12 Crystallizers for Brine Waste Treatment: Technologies and Design Heuristics 12.1 Introduction 12.1.1 Brines and Crystallization 12.1.2 Current Brine Disposal and Challenges 12.2 Using Crystallizers for Brine Treatment 12.2.1 Pellet Softeners 12.2.2 Evaporative Crystallizers 12.2.3 Membrane Crystallization 12.2.3.1 Membrane Distillation Crystallization 12.2.3.2 Pressure-Driven Membrane Crystallization 12.3 Overcoming Challenges to Pressure-Driven Membrane Crystallizers 12.3.1 Vibratory Shear-Enhanced Filtration Process 12.3.2 Scaling-Resistant Membranes for Brine Disposal 12.3.2.1 Membrane Patterning 12.3.2.2 Membrane Surface Chemistry Modification 12.4 Brine Crystallizer Design Heuristics 12.4.1 Effect of Mixing and Residence Time 12.4.2 Interactions between Surfaces and Crystallization 12.5 Conclusions References Index