دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Li-feng Ge
سری:
ISBN (شابک) : 9811235007, 9789811235009
ناشر: WSPC
سال نشر: 2021
تعداد صفحات: 444
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 19 مگابایت
در صورت تبدیل فایل کتاب Solid Acoustic Waves And Vibration: Theory And Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب امواج صوتی جامد و ارتعاش: نظریه و کاربردها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
امواج صوتی جامد و ارتعاش: تئوری و کاربردها کتاب جدید و هیجان انگیزی است که خوانندگان را به موضوعی جذاب می برد. وجود ساختاری پیچیده و ظریف در مقادیر مشخصه که با معرفی یک سیستم مفهومی شامل عملگر فضا، متغیر فضا-زمان، نسبت پواسون مرجع و غیره و توسعه مدلهای تحلیلی برای همه موارد محدودکننده آشکار میشود، جذاب است. منحنی های پراکندگی امواج در یک صفحه الاستیک به طور کامل تعیین می شود و توضیحی سیستماتیک و مختصر از نظریه بنیادی این موضوع ارائه می شود. همانطور که فناوری MEMS و NEMS توسعه می یابد، تعدادی از مسائل جدید مانند اثرات تنش پسماند، لایه نازک، هوای جذب شده در شکاف های میکرو هوا و پوشش روی سیستم ارائه می شود که مشکل را پیچیده می کند و باعث ایجاد بحث ها می شود. میکرو دیافراگم ها توسط یک صفحه در کشش مدل شده و بر روی فنر هوا نصب می شوند، یک معادله TDK کلی از ارتعاش صفحات، شامل ارتعاشات آزاد، اجباری و میرا شده، و راه حل های آن توسعه می یابد. اثر بارگذاری پوشش با یک بار جرمی مدلسازی میشود. یک نظریه بار میکرو ارائه شده است. این کتاب خلاصهای از تحقیقات طولانیمدت نویسنده در مورد مبدلهای الکترومکانیکی و این موضوعات مرتبط است و توصیفی عالی با ترکیب نظریه و کاربرد ارائه میکند. اصل مبدلهای الکترومکانیکی که تبدیل بین انرژی مکانیکی و الکتریکی را به دست میآورند و جایگاه ویژهای را در زمینه رباتیک و ماشینهای هوشمند اشغال میکنند، با معرفی مفاهیم اپراتور فضا-زمان، ضریب تبدیل پیچیده، امپدانس وارونگی و غیره روشن میشود. .، و یک مدار معادل فایل نشده ارائه می شود. کاربردها در مبدلهای اولتراسونیک خازنی میکروماشین شده (mCUTs، CMUTs) برای تصویربرداری زیست پزشکی و تشدید کنندههای جرم اولتراسونیک (mUMRs) برای سنجش بیوشیمیایی، از جمله تشدید کنندههای اولتراسونیک نوع صفحه، نوع پرتو، نانوسیم، موج توده، LAW و SAW با تاخیر خط تشدید کنندههای اولتراسونیک. شرح داده شده. این کتاب میان رشته ای با توسعه فناوری MEMS و NEMS به طور فزاینده ای جذاب خواهد بود.
Solid Acoustic Waves and Vibration: Theory and Applications is an exciting new book that takes readers inside a fascinating subject. It is charming that there is a complex and delicate structure in characteristic values, which is revealed by introducing a conceptual system including space operator, space-time variable, reference Poisson's ratio, etc., and developing the analytical models for all limiting cases. The dispersion curves of waves in an elastic plate are determined completely, and a systematic and concise description of the fundamental theory of this subject is given. As MEMS and NEMS technology develops, a number of new issues presents, such as the effects of residual stress, thin-film, air captured in micro-air-gaps and coating on the system, which make the problem complicated and spark debates. Micro-diaphragms are modeled by a plate in tension and mounted on air-spring, a general TDK equation of vibration of plates, including free, forced and damped vibrations, and its solutions are developed. The loading effect of coating is modeled by a mass load; a micro-load theory is presented. This book is a summary of the author's long-term research on electromechanical transducers and these related issues, and they provide an excellent description combining theory and application. The principle of electromechanical transducers, which achieve the conversion between mechanical and electrical energy, occupying a particularly important position in the field of robotics and intelligent machines, is elucidated by introducing the concepts of space-time operator, complex transformation factor, inversion impedance, etc., and an unfiled equivalent circuit is presented. The applications in micromachined capacitive ultrasonic transducers (mCUTs, CMUTs) for biomedical imaging and ultrasonic mass resonators (mUMRs) for biochemical sensing, including plate-type, beam-type, nanowire, bulk-wave, LAW and SAW delay-line ultrasonic resonators are described. This interdisciplinary book will be increasingly attractive as MEMS and NEMS technology develops.
Contents Preface Chapter 1. Introduction 1.1 Rayleigh’s Foundation Works 1.1.1 The frequency equations 1.1.2 The thin-plate case 1.1.3 The thick-plate case 1.2 Lamb’s Contributions 1.2.1 The period equations 1.2.2 The long-wave (i.e., thin-plate) case 1.2.3 The short-wave (i.e., thick-plate) case 1.3 Viktorov’s Contributions 1.3.1 Characteristic equations 1.3.2 The long-wave and short-wave cases 1.3.3 Results obtained by numerical calculations 1.3.4 A discussion about normal modes 1.4 The Author’s Preliminary Works 1.4.1 A 3D plot representation method 1.4.2 Zero-order symmetric transitional mode (ZSTM) 1.4.3 A space operator introduced to the characteristic equations 1.4.4 Wave in and vibration of finite plates 1.4.5 Waves in and vibration of a plate with coating 1.5 The Author’s Further Works 1.5.1 Canonical characteristic equations 1.5.2 Analytical models for limiting wave modes (LWMs) 1.5.3 A representative description of dispersion curves 1.5.4 Dispersion model and dispersion theorem 1.5.5 The TDK Equation and Space-time factor 1.5.6 Electromechanical transducers 1.5.7 Micro-load theory for ultrasonic mass resonators (UMRs) Chapter 2. Acoustic Field in Solids 2.1 Basic Terminology 2.1.1 Displacement and velocity vector 2.1.2 Deformation 2.1.3 Strain and stress 2.1.4 Young’s modulus 2.1.5 Poisson’s ratio 2.2 Stress–Strain and Strain–Stress Equations 2.3 Motion Equation of a Volume Element in Solid 2.4 Acoustic Field and three-Dimensional Wave Equation 2.4.1 Gradient, divergence and curl 2.4.2 Three-dimensional wave equation of solids 2.4.3 Infinite solid and infinite plates 2.4.4 Finite solids and vibration of plates 2.5 Solid Mediums: Physical Parameters and Wave Velocities 2.6 Fluid Mediums: Wave Equations and Wave Velocities 2.6.1 Three-dimensional wave equation of fluids 2.6.2 Sound velocities in fluid mediums Chapter 3. Plane Waves in Infinite Plates 3.1 Symmetric Vibration and Two-Dimensional Wave Equation 3.2 Characteristic Equations with Free Boundaries 3.3 Wavenumbers and Wave Vector Analysis 3.4 Space-Time Variable and Characteristic Parameter 3.4.1 Two major functions 3.4.2 A special function 3.4.3 Characteristic parameter 3.4.4 Space–time variable 3.4.5 Space-time flying velocity 3.4.6 Characteristic value problem 3.5 Trigonometric, Hyperbolic and Bessel Functions 3.5.1 Trigonometric and hyperbolic functions 3.5.2 Bessel functions Chapter 4. Approaches to Characteristic Values 4.1 Canonical Characteristic Equations 4.2 Characteristic Equations for Three Different Velocity Regions 4.3 Reference System and Structure Frame of Characteristic Values 4.3.1 Reference Poisson’s ratio and reference system 4.3.2 Reference points and structure frame 4.4 Analytical Approach: The Limiting Wave Modes 4.5 Computational Approach: The 3D Plot Representation 4.6 Computational Approach: The 2D Plot Representation Chapter 5. Low-Frequency Wave Modes 5.1 Characteristic Equations of Low-Frequency Modes 5.2 Low-Frequency Symmetric Mode (LSM) 5.2.1 Characteristic values of LSM 5.2.2 The gold triangle and middle-C 5.2.3 The range of LSM 5.2.4 LSW velocity and frequency 5.3 Low-Frequency Antisymmetric Mode (LAM) 5.3.1 Characteristic values of LAM 5.3.2 The range of LAM 5.3.3 LAW velocities and frequencies 5.4 Dynamic Characteristics of LSM 5.4.1 Thickness compression stiffness 5.4.2 Longitudinal vibration and wave equation of plates 5.5 Dynamic Characteristics of LAM 5.5.1 Bending stiffness 5.5.2 Transverse vibration and wave equation of plates Chapter 6. High-Frequency Wave Modes 6.1 Characteristic Equations of High-Frequency Modes 6.2 High-Frequency Zero-Order Mode (HZM) 6.2.1 Characteristic values of HZM 6.2.2 The range of HZM (i.e., SAW mode) 6.2.3 Wave velocity and frequencies of HZW 6.3 High-Frequency Non-zero Modes (HNM) 6.3.1 Characteristic values of HNMs 6.3.2 The ranges of HNMs 6.3.3 Typical examples of HNMs 6.3.4 The frequencies of HNWs 6.4 Trend Equation and Trend Curves of Characteristic Values 6.4.1 Trend curves with variable y 6.4.2 Trend curves with variable ζ 6.5 Zero-Order and Non-zero Modes Chapter 7. Transitional Wave Modes 7.1 Characteristic Equations of Transitional Modes 7.2 Zero-Order Symmetric Transitional Mode (ZSTM) 7.2.1 Characteristic equation of ZSTM 7.2.2 Characteristic values of ZSTM 7.2.3 An analytical model for ZSTM 7.3 Non-zero Symmetric Transitional Modes (NSTMs) 7.3.1 Characteristic equation of NSTMs 7.3.2 Characteristic values of NSTMs 7.3.3 An analytical model for NSTMs 7.4 Non-zero Antisymmetric Transitional Modes (NATMs) 7.4.1 Characteristic equation of NATMs 7.4.2 Characteristic values of NATMs 7.4.3 An analytical model for NATMs 7.5 Base Axis Mode (BAM) and Base Point of Dispersion Curves Chapter 8. Resonance Wave Modes 8.1 Characteristic Equations of Resonance Modes 8.2 Symmetric Resonance Modes (SRMs) 8.2.1 Characteristic values of SRMs 8.2.2 Solutions with ν = νref = 1/3 8.2.3 Solutions with ν < 1/3 and ν > 1/3 8.2.4 Numerical examples of solutions 8.3 Antisymmetric Resonance Modes (ARMs) 8.3.1 Characteristic values of ARMs 8.3.2 Solutions with ν = νref = 1/3 8.3.3 Solutions with ν < 1/3 and ν > 1/3 8.3.4 Numerical examples of solutions 8.4 Longitudinal Modes and Transverse Mode 8.5 Sequence of Non-zero Symmetric Modes (NS-modes) 8.6 Sequence of Non-zero Antisymmetric Modes (NA-modes) Chapter 9. Reference System of Dispersion Curves 9.1 Limiting Wave Modes and Reference Point Coordinates 9.2 Reference Structure Frame and Reference System 9.3 Basic Reference System of the Dispersion Curves 9.4 Fundamental Period and Dual-Period 9.5 Standard Dispersion Curves and Six-Plus-Five Structure Chapter 10. Dispersion Curves 10.1 The 3D Plot Representation of Dispersion Curves 10.1.1 The 3D plots using variable pairs (x, y) 10.1.2 The 3D plots using variable pairs (x, ζ) 10.2 Dispersion Curves of Zero-Order Modes 10.3 Dispersion Curves of Non-zero Modes 10.4 A Representative Description of Dispersion Curves Chapter 11. Dispersion Theorem of Waves 11.1 A General Dispersion Model and Dispersion Theorem 11.2 Physical Basis and Design Rule of Solid-State Transducers 11.3 Mathematical Models for Ultrasonic Resonators 11.4 Optimal Designs of Ultrasonic Resonators 11.4.1 Longitudinal and transverse bulk acoustic resonators (BARs) 11.4.2 LAW delay-line ultrasonic resonators 11.4.3 SAW delay-line ultrasonic resonators 11.5 Dynamic Characteristics of Ultrasonic Resonators Chapter 12. Longitudinal and Transverse Modes 12.1 Longitudinal Wave and Vibration Modes 12.2 Longitudinal Modes: Parallel and Circular Plane Waves 12.3 Transverse Wave and Vibration Modes 12.4 Transverse Modes: Parallel and Circular Plane Waves 12.5 Dynamics of Single Mode and Multi-Mode Plates Chapter 13. Longitudinal Vibrations 13.1 Longitudinal Vibration and Wave Equation 13.2 Longitudinal Vibrations of Plates, Posts and 1D Bars 13.2.1 Symmetric longitudinal vibration (SLVs) of plates 13.2.2 Longitudinal vibrations of 1D bars 13.3 Solutions of Longitudinal Vibration Equations 13.3.1 F–F boundary conditions 13.3.2 C–C boundary conditions 13.3.3 C–F boundary conditions 13.4 Space–Time Symmetry and Reciprocity of Longitudinal Vibrations 13.5 Dynamic Characteristics of Longitudinal Vibrations 13.5.1 Characteristic values and natural frequencies 13.5.2 Normalized deflection function and mode shapes 13.5.3 Basic reference values Chapter 14. Vibrations of Membranes 14.1 Transverse Vibration Equation of Membranes 14.2 Rectangular Symmetric Vibrations of Membranes 14.2.1 A particular case: Transverse vibrations of springs 14.3 Space–Time Symmetry and Reciprocity of Rectangular Membranes 14.4 Dynamic Characteristics of Rectangular Membranes 14.4.1 Characteristic values and natural frequencies 14.4.2 Normalized deflection function and mode shapes 14.4.3 Basic reference values 14.5 Circular Symmetric Vibrations of Membranes 14.6 Space-Time Symmetry and Reciprocity of Circular Membranes 14.7 Dynamic Characteristics of Circular Membranes 14.7.1 Characteristic equation and natural frequencies 14.7.2 Normalized deflection function and mode shapes 14.7.3 Basic reference values Chapter 15. Vibration of Plates 15.1 Transverse Vibration Equation of Plates 15.2 Rectangular Symmetric Vibrations of Plates and 1D Bars 15.2.1 A particular case: T-vibrations of 1D bars 15.2.2 F–F boundary conditions 15.2.3 C–C boundary conditions 15.2.4 C–F boundary conditions 15.3 Space-Time Symmetry and Reciprocity of Rectangular Plates 15.4 Dynamic Characteristics of Rectangular Plates and 1D Bar 15.4.1 Characteristic equations and natural frequencies 15.4.2 Normalized deflection function and mode shapes 15.4.3 Basic reference values 15.5 Circular Symmetric Vibrations of Plates 15.6 Space–Time Symmetry and Reciprocity of Circular Plates 15.7 Dynamic Characteristics of Circular Plates 15.7.1 Characteristic equation and natural frequencies 15.7.2 Normalized deflection function and mode shapes 15.7.3 Basic reference values Chapter 16. The TDK Equation of Plates 16.1 The TDK Vibration Equation of Plates 16.2 Particular Cases of the General TDK Equation 16.2.1 The TD equation 16.2.2 The DK and D equations 16.2.3 TK and T equations 16.2.4 The K equation: Simple harmonic resonator 16.3 The TDK Equation of Rectangular Plates 16.4 Rectangular Symmetric Vibrations (RSVs) of Plates 16.4.1 The solutions with boundary conditions 16.5 Characteristic Values of RSVs of TDK Rectangular Plates 16.5.1 Canonical characteristic equation 16.5.2 Natural frequencies 16.6 The TDK Equation of Circular Plates 16.6.1 Clamped TDK circular plates 16.7 Circular Symmetric Vibrations (CSVs) of Plates 16.8 Characteristic Values of CSVs of TDK Circular Plates 16.8.1 Canonical characteristic equation 16.8.2 Natural frequencies Chapter 17. Forced Vibrations 17.1 Forced Vibration Equation of TDK Plates 17.1.1 The kernel equation 17.1.2 Particular solution of the kernel equation 17.1.3 Deflection function and displacement solution 17.2 Impedance Analysis of Free Vibration TDK Equation 17.3 Impedance Analysis of Forced Vibration TDK Equation 17.4 Solutions of the Forced Vibration of TDK and TD Plates 17.4.1 Forced symmetric vibrations of TDK rectangular plates 17.4.2 Forced symmetric vibrations of TDK circular plates 17.5 Forced Symmetric Vibration of Clamped TDK Circular Plates 17.5.1 Solution of forced symmetric vibration 17.5.2 A numerical example Chapter 18. Damped Vibration and Space–Time Factor 18.1 Free Oscillation of the Damped System 18.2 Impedance Analysis of the Damped TDK Equation 18.3 Solution of the Damped TDK Equation 18.4 Mechanical Sensitivity of Elastic Transduction Elements 18.4.1 Transduction effects of TDK plates 18.4.2 Elastic transduction element and its mechanical sensitivity 18.4.3 Displacement, velocity and acceleration sensitivity 18.5 Electromechanical Sensitivity of Transducers 18.5.1 Receiving sensitivity 18.5.2 Transmitting sensitivity 18.6 Space–Time Operator and Space–Time Factor 18.6.1 Space operator 18.6.2 Time operator 18.6.3 Space–time operator j 18.6.4 Space–time factor jω 18.6.5 Space–time conversion and inversion and dispersion theorem 18.6.6 The jω factor and reciprocity theorem of mechanical system 18.6.7 Mechanical impedance expression with jω factor 18.6.8 The jω factor and reciprocity theorem of electromechanical system Chapter 19. Electromechanical Transducers 19.1 Principles of Electromechanical Transducers 19.2 A Unified Equivalent Circuit of Electromechanical Transducers 19.3 Reciprocity Calibration of Electromechanical Transducers 19.3.1 Piezoelectric reciprocity method of vibration calibration 19.3.2 Electrodynamic reciprocity method of vibration calibration 19.3.3 Free-field reciprocity method of condenser microphone 19.3.4 Wave effect correction of reciprocity calibrations 19.4 Modeling: Motion Equation and Static Deflection Equation 19.4.1 Motion equation of the general TDK vibration diaphragm 19.4.2 Static deflection equation of the TD diaphragm 19.4.3 Transmitting voltage displacement response 19.5 Modeling: Mechanical Resistance and Lumped Parameters 19.6 Modelling: Response of mCUTs and First-Order Approximation Chapter 20. Micro-Load Theory and Ultrasonic Resonators 20.1 Micro-load Theory and Loading Effects 20.2 Micro–Nano Plate and Beam Ultrasonic Resonators 20.3 Film Bulk Acoustic Wave Ultrasonic Resonators (FBARs) 20.4 LAW and SAW Delay-Line Ultrasonic Resonators 20.5 A Typical Example: The Sensitivity of SAW Gas Sensors 20.6 Mass Sensitivity and Resolution of UMRs 20.6.1 Mass sensitivity and mass resolution 20.6.2 Trance measurement and environmental monitoring References Index