ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Solar Cells and Light Management: Materials, Strategies and Sustainability

دانلود کتاب سلول های خورشیدی و مدیریت نور: مواد، استراتژی ها و پایداری

Solar Cells and Light Management: Materials, Strategies and Sustainability

مشخصات کتاب

Solar Cells and Light Management: Materials, Strategies and Sustainability

ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 0081027621, 9780081027622 
ناشر: Elsevier 
سال نشر: 2019 
تعداد صفحات: 532 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 35 مگابایت 

قیمت کتاب (تومان) : 53,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 2


در صورت تبدیل فایل کتاب Solar Cells and Light Management: Materials, Strategies and Sustainability به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب سلول های خورشیدی و مدیریت نور: مواد، استراتژی ها و پایداری نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

0
	Front-Matter_2020_Solar-Cells-and-Light-Management
		Materials, Strategies and Sustainability
	Copyright_2020_Solar-Cells-and-Light-Management
		Copyright
	Dedication_2020_Solar-Cells-and-Light-Management
		Dedication
	Contributors_2020_Solar-Cells-and-Light-Management
		Contributors
	Preface_2020_Solar-Cells-and-Light-Management
		Preface
1
	One . Solar cells\' evolution and perspectives: a short review
		1.1 An introduction: economics, energy, and sustainability
		1.2 Solar photovoltaics: historical notes
		1.3 Main types of solar cells
			1.3.1 Multijunction solar cells
			1.3.2 Gallium arsenide single-junction solar cells
			1.3.3 Silicon solar cells
			1.3.4 Thin-film technologies
			1.3.5 Emerging photovoltaics
		1.4 Efficiency of solar cells
			1.4.1 Light trapping strategies
			1.4.2 Plasmonics
			1.4.3 Spectral conversion
		1.5 Challenges and future prospects
		Acknowledgments
		References
2
	Two . Silicon solar cells: materials, technologies, architectures
		2.1 The photoactive materials
			2.1.1 Crystalline silicon
			2.1.2 Thin-film silicon
		2.2 Silicon homojunction solar cells
			2.2.1 Classic design and fabrication process
			2.2.2 High-efficiency designs
		2.3 Silicon heterojunction and record solar cells
		2.4 Thin-film silicon solar cells
			2.4.1 p-i-n and n-i-p solar cell designs
			2.4.2 Light trapping strategies
			2.4.3 Tandem approach
		2.5 Summary and outlook
		References
3
	Three . Ternary organic solar cells
		3.1 Introduction
		3.2 Working mechanism of ternary OSCs
			3.2.1 Four working mechanisms
			3.2.2 Characterization methods
		3.3 The development of ternary OSCs
			3.3.1 Fullerene-based ternary OSCs
				3.3.1.1 Donor 1:Donor 2:fullerene
				3.3.1.2 Donor:fullerene 1:fullerene 2
			3.3.2 Fullerene- and nonfullerene-based ternary OSCs
			3.3.3 Nonfullerene-based ternary OSCs
				3.3.3.1 Donor: nonfullerene 1: nonfullerene 2
				3.3.3.2 Donor 1: Donor 2: nonfullerene
		3.4 The potential research directions of ternary OSCs
			3.4.1 Thick active layer–based ternary OSCs
			3.4.2 Semitransparent ternary OSCs
			3.4.3 Stability of ternary OSCs
		3.5 Challenges and outlooks
		Acknowledgments
		References
4
	Four . Dye-sensitized solar cells: from synthetic dyes to natural pigments
		4.1 Introduction
		4.2 Dye-sensitized solar cells: structure and operating principles
			4.2.1 Analytic model and photovoltaic performance
				4.2.1.1 Diode equivalent circuit model
				4.2.1.2 Evaluation of DSSC performance
		4.3 Photoanode or working electrode
			4.3.1 TiO2-based photoanode
		4.4 Natural dyes
			4.4.1 Chlorophylls
			4.4.2 Betalains
			4.4.3 Anthocyanins
				4.4.3.1 Chemistry and equilibrium structures
				4.4.3.2 Photochemical and photophysical behavior
			4.4.4 Carotenoids
		4.5 Conclusion
		References
5
	Five . Perovskite solar cells
		5.1 Introduction
		5.2 Unique properties of metal—halide perovskites for photovoltaics
			5.2.1 Molecular composition and basic materials
			5.2.2 Band gap structure
			5.2.3 Crystal instability
			5.2.4 Charge transport
			5.2.5 Bulk recombination
			5.2.6 Ferroelectric properties
		5.3 Perovskite crystallization
			5.3.1 One-step perovskite formation
				5.3.1.1 Antisolvent-induced and solvent engineering
				5.3.1.2 Hot-casting
				5.3.1.3 Vacuum pumping
				5.3.1.4 Gas flow
			5.3.2 Two-step perovskite formation
				5.3.2.1 Crystal Engineering approach
				5.3.2.2 Vapor-assisted process
			5.3.3 Summary of crystallization properties
		5.4 Device architectures
			5.4.1 Evolution of the PSC architectures
			5.4.2 Tandem solar cells with perovskites
			5.4.3 Special structures
				5.4.3.1 Devices with carbon electrode
				5.4.3.2 Resonant NP for light harvesting management
		5.5 Stability of PSCs
			5.5.1 Light-induced degradation
				5.5.1.1 Photostability of charge transport layers
				5.5.1.2 Effects on ion distribution in metal halide perovskites
				5.5.1.3 Light-induced halide segregation
				5.5.1.4 Light-induced cation segregation
				5.5.1.5 Photochemical reactions
			5.5.2 Reactions with electrodes
		5.6 Upscaling of perovskite solar devices
			5.6.1 Series-connected solar modules
			5.6.2 Parallel-connected solar modules
			5.6.3 The P1–P2–P3 process
				5.6.3.1 P1 process
				5.6.3.2 P2 process
				5.6.3.3 P3 process
				5.6.3.4 Safety areas
			5.6.4 Deposition techniques
		5.7 Conclusions and perspectives
		Acknowledgments
		References
6
	Six . All-oxide solar cells
		6.1 Introduction
		6.2 Electronic band structure, interface tuning, and doping
		6.3 Nanostructured architectures and nanowires
		6.4 Back contact and alternative structures
		6.5 Conclusions
		References
7
	Seven . Simulations of conventional and augmented types of solar cells
		7.1 Introduction
		7.2 About p–n junctions, diodes, and solar cells
			7.2.1 Basics of p–n junctions
			7.2.2 A diode model for solar cells
			7.2.3 Detailed analysis of the diode model
		7.3 Solar cell device simulations
		7.4 Ab initio materials properties
		7.5 Simulations of augmented solar cells
			7.5.1 Physical background
			7.5.2 Numerical implementation
			7.5.3 An example: upconversion in solar cells using Er3+ codoped with Yb3+
		7.6 Conclusions
		Acknowledgments
		References
8
	Eight . Light trapping by plasmonic nanoparticles
		8.1 Introduction
		8.2 Theoretical background
			8.2.1 Localized surface plasmon resonance
			8.2.2 Plasmonic light trapping
			8.2.3 Optimization guidelines
		8.3 Self-assembled silver nanoparticles
			8.3.1 Solid-state dewetting
			8.3.2 Nanoparticle fabrication and characterization techniques
			8.3.3 Correlation between structural and optical properties of self-assembled nanoparticles
			8.3.4 Plasmonic back reflectors
		8.4 Plasmon-enhanced absorption in thin silicon films
			8.4.1 Independent quantification of useful and parasitic absorption
			8.4.2 Absorption enhancement in μm-Si thin films
		8.5 Plasmon enhanced a-Si:H solar cells
			8.5.1 Solar cell fabrication and characterization
			8.5.2 Photocurrent enhancement
		8.6 Summary
		Acknowledgments
		References
9
	NINE . Wave-optical front structures on silicon and perovskite thin-film solar cells
		9.1 Introduction
		9.2 Ray optics limits
		9.3 Optimized wave-optical schemes for thin-film solar cells
			9.3.1 Photonic-enhanced silicon-based solar cells
				9.3.1.1 Crystalline silicon absorbers
				9.3.1.2 Amorphous silicon absorbers
				9.3.1.3 Comparison with lambertian limits
			9.3.2 Photonic-enhanced perovskite-based solar cells
				9.3.2.1 Light trapping plus UV blocking effect of photonic structures
		9.4 Integration of photonic structures via soft lithography
			9.4.1 Colloidal lithography microfabrication
			9.4.2 Optical probing of absorption enhancement
			9.4.3 Implementation of photonic structures in a-Si:H solar cells
		9.5 Final remarks
		Acknowledgments
		References
10
	TEN . Organic and perovskite photovoltaics for indoor applications
		10.1 Introduction
		10.2 Basic principles for indoor photovoltaics
		10.3 Characterization of indoor photovoltaic cells
			10.3.1 Indoor light sources
			10.3.2 Reporting indoor PV performance
		10.4 Organic photovoltaic cells for indoor light harvesting
			10.4.1 Background of organic photovoltaic cells
			10.4.2 Indoor performance of three benchmark OPV systems
			10.4.3 Finding state-of-the art OPV systems for indoor applications
		10.5 Perovskite photovoltaic cells for indoor light harvesting
			10.5.1 Perovskite semiconductors
			10.5.2 Architectures of PPV cells
			10.5.3 Introduction to perovskite PV cells for indoor applications
			10.5.4 Perovskite PV cell operation in low-light environments
				10.5.4.1 Role of interfacial trap states
				10.5.4.2 Importance of cell architecture and interlayers
		10.6 Applications
			10.6.1 Consumer products
			10.6.2 The Internet of things
		10.7 Summary and outlook
		Acknowledgment
		References
11
	Eleven . Glass ceramics for frequency conversion
		11.1 Introduction
			11.1.1 Transparent glass ceramics
		11.2 Frequency conversion by energy transfer
			11.2.1 Downconversion and quantum cutting
		11.3 Glass ceramic hosts
		11.4 Energy transfer mechanism: the case of Tb3+/Yb3+ silica-hafnia
		11.5 Conclusions
		Acknowledgments
		References
12
	Twelve . Downconversion for 1μm luminescence in lanthanide and Yb3+ co-doped phosphors
		12.1 Solar spectrum and crystalline Si solar cell
		12.2 Spectral conversion, upconversion, and downconversion
		12.3 Quantum cutting phosphors
			12.3.1 Examples of single-ion QC and QC by two-step energy transfer
		12.4 Downconversion for 1μm luminescence in lanthanide and Yb3+ co-doped phosphors
			12.4.1 Selection of sensitizer
			12.4.2 Energy transfer efficiency evaluation
			12.4.3 Pr3+-Yb3+ pair
			12.4.4 Nd3+-Yb3+ pair
			12.4.5 Eu3+-Yb3+ pair
			12.4.6 Tb3+-Yb3+ pair
			12.4.7 Dy3+-Yb3+ pair
			12.4.8 Ho3+-Yb3+ pair
			12.4.9 Er3+-Yb3+ pair
			12.4.10 Tm3+-Yb3+ pair
			12.4.11 Ce3+-Yb3+ pair
			12.4.12 Eu2+-Yb3+ pair
		12.5 Energy transfer mechanism and comparison of lanthanide donors
			12.5.1 Candidates of downconversion by two-step ET
			12.5.2 Candidates for cooperative downconversion
		12.6 Conclusions
		References
13
	Thirteen . Down-shifting by quantum dots for silicon solar cell applications
		13.1 Introduction
		13.2 Application of quantum dot layers on commercially available silicon solar cells
			13.2.1 CdTe quantum dots
			13.2.2 Carbon quantum dots
			13.2.3 ZnO quantum dots
		13.3 Fabrication of solar cells with quantum dot layers
			13.3.1 CdTe
			13.3.2 CdSe/CdS core-shell quantum dots
			13.3.3 Silicon quantum dots
		13.4 Conclusions
		References
14
	Fourteen . On sustainable PV–solar exploitation: an emergy analysis
		14.1 Introduction
		14.2 Sustainability and photovoltaics
		14.3 Emergy analysis
			14.3.1 The concept of emergy
			14.3.2 The emergy diagrams
			14.3.3 Emergy flows determination
				14.3.3.1 Transformity
				14.3.3.2 Specific emergy
				14.3.3.3 Emergy per unit money
				14.3.3.4 Emergy cost of labor
			14.3.4 The emergy algebra
			14.3.5 Emergy indicators
				14.3.5.1 Emergy yield ratio, EYR=U/F
				14.3.5.2 Environmental loading ratio, ELR=(F+N)/R
				14.3.5.3 Emergy sustainability index, ESI=EYR/ELR
				14.3.5.4 Emergy investment ratio, EIR=F/(R+N)
				14.3.5.5 Areal empower intensity, AEI=U/A
				14.3.5.6 Emergy exchange ratio, EER
		14.4 Setting up the emergy analysis of photovoltaic systems
		14.5 Discussion
		14.6 Some final reflections
		References
15
	Fifteen . Integrating life cycle assessment and commodity chain analysis to explore sustainable and just photovoltaics
		15.1 Introduction
		15.2 Life cycle assessment
		15.3 Commodity chain analysis
		15.4 Environmental and social impacts of photovoltaics
			15.4.1 Cadmium pollution claims from manufacturing and end-of-life thin-film photovoltaics
		15.5 Life cycle analysis of cadmium in photovoltaics
		15.6 Conclusion: integrated assessment of qualitative and quantitative information
		References
16
	Index
		A
		B
		C
		D
		E
		F
		G
		H
		I
		J
		L
		M
		N
		O
		P
		Q
		R
		S
		T
		U
		V
		W
		Y
		Z




نظرات کاربران