دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Francesco Enrichi (editor). Giancarlo Righini (editor)
سری:
ISBN (شابک) : 0081027621, 9780081027622
ناشر: Elsevier
سال نشر: 2019
تعداد صفحات: 532
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 35 مگابایت
در صورت تبدیل فایل کتاب Solar Cells and Light Management: Materials, Strategies and Sustainability به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب سلول های خورشیدی و مدیریت نور: مواد، استراتژی ها و پایداری نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
0 Front-Matter_2020_Solar-Cells-and-Light-Management Materials, Strategies and Sustainability Copyright_2020_Solar-Cells-and-Light-Management Copyright Dedication_2020_Solar-Cells-and-Light-Management Dedication Contributors_2020_Solar-Cells-and-Light-Management Contributors Preface_2020_Solar-Cells-and-Light-Management Preface 1 One . Solar cells\' evolution and perspectives: a short review 1.1 An introduction: economics, energy, and sustainability 1.2 Solar photovoltaics: historical notes 1.3 Main types of solar cells 1.3.1 Multijunction solar cells 1.3.2 Gallium arsenide single-junction solar cells 1.3.3 Silicon solar cells 1.3.4 Thin-film technologies 1.3.5 Emerging photovoltaics 1.4 Efficiency of solar cells 1.4.1 Light trapping strategies 1.4.2 Plasmonics 1.4.3 Spectral conversion 1.5 Challenges and future prospects Acknowledgments References 2 Two . Silicon solar cells: materials, technologies, architectures 2.1 The photoactive materials 2.1.1 Crystalline silicon 2.1.2 Thin-film silicon 2.2 Silicon homojunction solar cells 2.2.1 Classic design and fabrication process 2.2.2 High-efficiency designs 2.3 Silicon heterojunction and record solar cells 2.4 Thin-film silicon solar cells 2.4.1 p-i-n and n-i-p solar cell designs 2.4.2 Light trapping strategies 2.4.3 Tandem approach 2.5 Summary and outlook References 3 Three . Ternary organic solar cells 3.1 Introduction 3.2 Working mechanism of ternary OSCs 3.2.1 Four working mechanisms 3.2.2 Characterization methods 3.3 The development of ternary OSCs 3.3.1 Fullerene-based ternary OSCs 3.3.1.1 Donor 1:Donor 2:fullerene 3.3.1.2 Donor:fullerene 1:fullerene 2 3.3.2 Fullerene- and nonfullerene-based ternary OSCs 3.3.3 Nonfullerene-based ternary OSCs 3.3.3.1 Donor: nonfullerene 1: nonfullerene 2 3.3.3.2 Donor 1: Donor 2: nonfullerene 3.4 The potential research directions of ternary OSCs 3.4.1 Thick active layer–based ternary OSCs 3.4.2 Semitransparent ternary OSCs 3.4.3 Stability of ternary OSCs 3.5 Challenges and outlooks Acknowledgments References 4 Four . Dye-sensitized solar cells: from synthetic dyes to natural pigments 4.1 Introduction 4.2 Dye-sensitized solar cells: structure and operating principles 4.2.1 Analytic model and photovoltaic performance 4.2.1.1 Diode equivalent circuit model 4.2.1.2 Evaluation of DSSC performance 4.3 Photoanode or working electrode 4.3.1 TiO2-based photoanode 4.4 Natural dyes 4.4.1 Chlorophylls 4.4.2 Betalains 4.4.3 Anthocyanins 4.4.3.1 Chemistry and equilibrium structures 4.4.3.2 Photochemical and photophysical behavior 4.4.4 Carotenoids 4.5 Conclusion References 5 Five . Perovskite solar cells 5.1 Introduction 5.2 Unique properties of metal—halide perovskites for photovoltaics 5.2.1 Molecular composition and basic materials 5.2.2 Band gap structure 5.2.3 Crystal instability 5.2.4 Charge transport 5.2.5 Bulk recombination 5.2.6 Ferroelectric properties 5.3 Perovskite crystallization 5.3.1 One-step perovskite formation 5.3.1.1 Antisolvent-induced and solvent engineering 5.3.1.2 Hot-casting 5.3.1.3 Vacuum pumping 5.3.1.4 Gas flow 5.3.2 Two-step perovskite formation 5.3.2.1 Crystal Engineering approach 5.3.2.2 Vapor-assisted process 5.3.3 Summary of crystallization properties 5.4 Device architectures 5.4.1 Evolution of the PSC architectures 5.4.2 Tandem solar cells with perovskites 5.4.3 Special structures 5.4.3.1 Devices with carbon electrode 5.4.3.2 Resonant NP for light harvesting management 5.5 Stability of PSCs 5.5.1 Light-induced degradation 5.5.1.1 Photostability of charge transport layers 5.5.1.2 Effects on ion distribution in metal halide perovskites 5.5.1.3 Light-induced halide segregation 5.5.1.4 Light-induced cation segregation 5.5.1.5 Photochemical reactions 5.5.2 Reactions with electrodes 5.6 Upscaling of perovskite solar devices 5.6.1 Series-connected solar modules 5.6.2 Parallel-connected solar modules 5.6.3 The P1–P2–P3 process 5.6.3.1 P1 process 5.6.3.2 P2 process 5.6.3.3 P3 process 5.6.3.4 Safety areas 5.6.4 Deposition techniques 5.7 Conclusions and perspectives Acknowledgments References 6 Six . All-oxide solar cells 6.1 Introduction 6.2 Electronic band structure, interface tuning, and doping 6.3 Nanostructured architectures and nanowires 6.4 Back contact and alternative structures 6.5 Conclusions References 7 Seven . Simulations of conventional and augmented types of solar cells 7.1 Introduction 7.2 About p–n junctions, diodes, and solar cells 7.2.1 Basics of p–n junctions 7.2.2 A diode model for solar cells 7.2.3 Detailed analysis of the diode model 7.3 Solar cell device simulations 7.4 Ab initio materials properties 7.5 Simulations of augmented solar cells 7.5.1 Physical background 7.5.2 Numerical implementation 7.5.3 An example: upconversion in solar cells using Er3+ codoped with Yb3+ 7.6 Conclusions Acknowledgments References 8 Eight . Light trapping by plasmonic nanoparticles 8.1 Introduction 8.2 Theoretical background 8.2.1 Localized surface plasmon resonance 8.2.2 Plasmonic light trapping 8.2.3 Optimization guidelines 8.3 Self-assembled silver nanoparticles 8.3.1 Solid-state dewetting 8.3.2 Nanoparticle fabrication and characterization techniques 8.3.3 Correlation between structural and optical properties of self-assembled nanoparticles 8.3.4 Plasmonic back reflectors 8.4 Plasmon-enhanced absorption in thin silicon films 8.4.1 Independent quantification of useful and parasitic absorption 8.4.2 Absorption enhancement in μm-Si thin films 8.5 Plasmon enhanced a-Si:H solar cells 8.5.1 Solar cell fabrication and characterization 8.5.2 Photocurrent enhancement 8.6 Summary Acknowledgments References 9 NINE . Wave-optical front structures on silicon and perovskite thin-film solar cells 9.1 Introduction 9.2 Ray optics limits 9.3 Optimized wave-optical schemes for thin-film solar cells 9.3.1 Photonic-enhanced silicon-based solar cells 9.3.1.1 Crystalline silicon absorbers 9.3.1.2 Amorphous silicon absorbers 9.3.1.3 Comparison with lambertian limits 9.3.2 Photonic-enhanced perovskite-based solar cells 9.3.2.1 Light trapping plus UV blocking effect of photonic structures 9.4 Integration of photonic structures via soft lithography 9.4.1 Colloidal lithography microfabrication 9.4.2 Optical probing of absorption enhancement 9.4.3 Implementation of photonic structures in a-Si:H solar cells 9.5 Final remarks Acknowledgments References 10 TEN . Organic and perovskite photovoltaics for indoor applications 10.1 Introduction 10.2 Basic principles for indoor photovoltaics 10.3 Characterization of indoor photovoltaic cells 10.3.1 Indoor light sources 10.3.2 Reporting indoor PV performance 10.4 Organic photovoltaic cells for indoor light harvesting 10.4.1 Background of organic photovoltaic cells 10.4.2 Indoor performance of three benchmark OPV systems 10.4.3 Finding state-of-the art OPV systems for indoor applications 10.5 Perovskite photovoltaic cells for indoor light harvesting 10.5.1 Perovskite semiconductors 10.5.2 Architectures of PPV cells 10.5.3 Introduction to perovskite PV cells for indoor applications 10.5.4 Perovskite PV cell operation in low-light environments 10.5.4.1 Role of interfacial trap states 10.5.4.2 Importance of cell architecture and interlayers 10.6 Applications 10.6.1 Consumer products 10.6.2 The Internet of things 10.7 Summary and outlook Acknowledgment References 11 Eleven . Glass ceramics for frequency conversion 11.1 Introduction 11.1.1 Transparent glass ceramics 11.2 Frequency conversion by energy transfer 11.2.1 Downconversion and quantum cutting 11.3 Glass ceramic hosts 11.4 Energy transfer mechanism: the case of Tb3+/Yb3+ silica-hafnia 11.5 Conclusions Acknowledgments References 12 Twelve . Downconversion for 1μm luminescence in lanthanide and Yb3+ co-doped phosphors 12.1 Solar spectrum and crystalline Si solar cell 12.2 Spectral conversion, upconversion, and downconversion 12.3 Quantum cutting phosphors 12.3.1 Examples of single-ion QC and QC by two-step energy transfer 12.4 Downconversion for 1μm luminescence in lanthanide and Yb3+ co-doped phosphors 12.4.1 Selection of sensitizer 12.4.2 Energy transfer efficiency evaluation 12.4.3 Pr3+-Yb3+ pair 12.4.4 Nd3+-Yb3+ pair 12.4.5 Eu3+-Yb3+ pair 12.4.6 Tb3+-Yb3+ pair 12.4.7 Dy3+-Yb3+ pair 12.4.8 Ho3+-Yb3+ pair 12.4.9 Er3+-Yb3+ pair 12.4.10 Tm3+-Yb3+ pair 12.4.11 Ce3+-Yb3+ pair 12.4.12 Eu2+-Yb3+ pair 12.5 Energy transfer mechanism and comparison of lanthanide donors 12.5.1 Candidates of downconversion by two-step ET 12.5.2 Candidates for cooperative downconversion 12.6 Conclusions References 13 Thirteen . Down-shifting by quantum dots for silicon solar cell applications 13.1 Introduction 13.2 Application of quantum dot layers on commercially available silicon solar cells 13.2.1 CdTe quantum dots 13.2.2 Carbon quantum dots 13.2.3 ZnO quantum dots 13.3 Fabrication of solar cells with quantum dot layers 13.3.1 CdTe 13.3.2 CdSe/CdS core-shell quantum dots 13.3.3 Silicon quantum dots 13.4 Conclusions References 14 Fourteen . On sustainable PV–solar exploitation: an emergy analysis 14.1 Introduction 14.2 Sustainability and photovoltaics 14.3 Emergy analysis 14.3.1 The concept of emergy 14.3.2 The emergy diagrams 14.3.3 Emergy flows determination 14.3.3.1 Transformity 14.3.3.2 Specific emergy 14.3.3.3 Emergy per unit money 14.3.3.4 Emergy cost of labor 14.3.4 The emergy algebra 14.3.5 Emergy indicators 14.3.5.1 Emergy yield ratio, EYR=U/F 14.3.5.2 Environmental loading ratio, ELR=(F+N)/R 14.3.5.3 Emergy sustainability index, ESI=EYR/ELR 14.3.5.4 Emergy investment ratio, EIR=F/(R+N) 14.3.5.5 Areal empower intensity, AEI=U/A 14.3.5.6 Emergy exchange ratio, EER 14.4 Setting up the emergy analysis of photovoltaic systems 14.5 Discussion 14.6 Some final reflections References 15 Fifteen . Integrating life cycle assessment and commodity chain analysis to explore sustainable and just photovoltaics 15.1 Introduction 15.2 Life cycle assessment 15.3 Commodity chain analysis 15.4 Environmental and social impacts of photovoltaics 15.4.1 Cadmium pollution claims from manufacturing and end-of-life thin-film photovoltaics 15.5 Life cycle analysis of cadmium in photovoltaics 15.6 Conclusion: integrated assessment of qualitative and quantitative information References 16 Index A B C D E F G H I J L M N O P Q R S T U V W Y Z