ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Soils and Geotechnology in Construction

دانلود کتاب خاک و ژئوتکنولوژی در ساخت و ساز

Soils and Geotechnology in Construction

مشخصات کتاب

Soils and Geotechnology in Construction

ویرایش: 1 
نویسندگان:   
سری:  
ISBN (شابک) : 1138551104, 9781138551107 
ناشر: CRC Press 
سال نشر: 2019 
تعداد صفحات: 507 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 12 مگابایت 

قیمت کتاب (تومان) : 49,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 7


در صورت تبدیل فایل کتاب Soils and Geotechnology in Construction به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب خاک و ژئوتکنولوژی در ساخت و ساز نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب خاک و ژئوتکنولوژی در ساخت و ساز



این کتاب حوزه ژئوتکنولوژی کاربردی مربوط به تمام جنبه های ساخت و ساز در زمین، از جمله پر فشرده، حفاری ها، بهسازی زمین، پی ها، سیستم های نگهدارنده زمین و خصوصیات ژئوتکنیکی سایت را پوشش می دهد. این برای سال اول دوره تحصیلات تکمیلی در زمینه بهسازی زمین و ژئوساخت مناسب است و برای مهندسان مجرب، هم مشاوران و هم پیمانکاران مناسب است.

به طور مشخص شناسایی خاک های مشکل ساز و کاهش مناسب را پوشش می دهد. اقدامات، و بازرسی از کار ساخت و ساز زمین. این ترکیبی از فنی و عملی در ژئوتکنولوژی کاربردی است.


توضیحاتی درمورد کتاب به خارجی

This book covers the field of applied geotechnology related to all aspects of construction in ground, including compacted fill, excavations, ground improvement, foundations, earth retaining systems and geotechnical site characterization. It suits the first year of a graduate course on ground improvement and geoconstruction and will suit practicing engineers, both consultants and contractors.

Distinctively it covers the identification of problematic soils and appropriate mitigation measures, and the inspection of ground construction work. It combines the technical and the practical in applied geotechnology.



فهرست مطالب

Cover
Half Title
Title Page
Copyright Page
Table of Contents
About the Author
1: Soils—The nature of ground; Soil properties and soil behavior
	1.1 The nature and composition of soils
		1.1.1 Types of soils
			1.1.1.1 Transported soils
			1.1.1.2 Residual soils
		1.1.2 Fine-grained soils vs. coarse-grained soils
	1.2 Composite nature of soils—Phase relationships
		1.2.1 Phase relationships based on mass
			1.2.1.1 Water content
		1.2.2 Phase relationships based on volume
			1.2.2.1 Voids ratio
			1.2.2.2 Porosity
			1.2.2.3 Saturation
		1.2.3 Phase relationships combining mass and volume
			1.2.3.1 Wet density
			1.2.3.2 Dry density
			1.2.3.3 Saturated density
			1.2.3.4 Buoyant density
		1.2.4 Unit density of water and unit density of solids
			1.2.4.1 Unit density of water
			1.2.4.2 Unit density of solids
	1.3 Soil composition and properties
		1.3.1 Grain-size distribution
			1.3.1.1 Coarse-grained soils
			1.3.1.2 Fine-grained soils
		1.3.2 Grain shape—Coarse-grained soils
		1.3.3 Clay mineralogy
			1.3.3.1 Kaolinite “AB”
			1.3.3.2 Montmorillonite “ABA”
			1.3.3.3 Illite “ABA”
			1.3.3.4 Mixed clay minerals
		1.3.4 Specific surface area
		1.3.5 Cation exchange capacity
		1.3.6 Carbonate content
		1.3.7 Organic content
		1.3.8 Atterberg limits—Consistency of fine-grained soils
		1.3.9 Activity
	1.4 Geostatic stresses in soils
		1.4.1 Vertical stress
		1.4.2 Horizontal stress
	1.5 Stress history in fine-grained soils
		1.5.1 Normally consolidated soils
		1.5.2 Overconsolidated soils
		1.5.3 Consolidation settlement
		1.5.4 Underconsolidated soils?
		1.5.5 Overconsolidation stress difference
		1.5.6 Influence of soil stress history on KO
	1.6 Shear strength of soils
		1.6.1 Drained shear strength
		1.6.2 Undrained shear strength
		1.6.3 Sensitivity of fine-grained soils
		1.6.4 Thixotropy of fine-grained soils
	1.7 Hydraulic conductivity
	1.8 Soil identification, descriptions, and classification
		1.8.1 Soil classification
		1.8.2 Soil identification and descriptions—The modified unified soil description system
	References
2: Geotechnical site investigations
	2.1 Introduction
	2.2 Purpose of site investigations
		2.2.1 Determine subsurface stratigraphy
		2.2.2 Determine groundwater conditions
		2.2.3 Obtain soil and rock samples
		2.2.4 Perform field tests
	2.3 Preliminary desk investigations
	2.4 Field investigations—Boreholes and test pits
		2.4.1 Hand-auger borings
		2.4.2 Truck-/Track-/Skid-mounted soil borings
			2.4.2.1 Solid-stem continuous flight auger borings
			2.4.2.2 Hollow-stem continuous auger borings
			2.4.2.3 Mud rotary wash-borings
		2.4.3 Percussion drilling
		2.4.4 Test pits
	2.5 Soil sampling
		2.5.1 Sample disturbance
		2.5.2 Disturbed and undisturbed samples
		2.5.3 Split-spoon sampler and the Standard Penetration Test
		2.5.4 Thin-walled Shelby tube sampler for fine-grained soils
		2.5.5 Stationary or fixed-piston sampler
		2.5.6 Core-barrel samplers for stiff soils
		2.5.7 U100 drive-tube sampler
		2.5.8 Block sampling
	2.6 Field boring logs
	2.7 In situ testing
		2.7.1 Standard Penetration Test (SPT)
		2.7.2 Standard Penetration Test with Torque (SPT-T)
		2.7.3 Dynamic Cone Penetrometer test (DCP)
		2.7.4 Cone Penetration Test (CPT) and Piezocone Test (CPTU)
		2.7.5 Field Vane Test (FVT)
		2.7.6 Dilatometer Test (DMT)
		2.7.7 Pressuremeter Test (PMT)
		2.7.8 Borehole Shear Test (BST)
		2.7.9 Plate Load Test (PLT)
	2.8 Measurements While Drilling (MWD)
	2.9 Site investigation strategies and minimum investigation
	References
3: General construction earthwork
	3.1 Introduction
	3.2 Soil unit weight
	3.3 Soil states related to earthwork
		3.3.1 Bank to loose—Soil swell
		3.3.2 Bank to compacted—Soil shrinkage
		3.3.3 Loose to compacted
	3.4 Determining values of swell, shrinkage, and compaction
	3.5 Load and shrinkage factors
	3.6 Sensitivity of earthwork calculations
	3.7 Rock excavation and compaction
	3.8 Spoil piles/stockpiles
	Reference
4: Compaction of soils
	4.1 Introduction
	4.2 Laboratory compaction of fine-grained and mixed-grained soils
		4.2.1 Proctor compaction
		4.2.2 Degree of saturation and the line of saturation (S = 100%)
		4.2.3 Maximum possible compacted dry density and water content
		4.2.4 Relationship between OWC and MDD
		4.2.5 Compaction energy-density growth curves
		4.2.6 Relative compaction
		4.2.7 Range in water content at relative compaction
		4.2.8 Modified versus Standard compaction characteristics
	4.3 Estimating compaction characteristics of fine-grained soils from soil characteristics
	4.4 Harvard Miniature compaction
	4.5 Laboratory compaction of coarse-grained soils
		4.5.1 The relative density concept
		4.5.2 Laboratory determination of minimum index density
		4.5.3 Laboratory determination of maximum index density
		4.5.4 Relation between minimum and maximum index density and grain-size
		4.5.5 Compactibility of coarse-grained soils
		4.5.6 Estimating relative density from one-point dry Proctor test
		4.5.7 Relationship between relative density and relative compaction
	4.6 Field compaction of soils
		4.6.1 Field compaction of fine-grained soils
		4.6.2 Field compaction of coarse-grained soils
		4.6.3 Field compaction in confined spaces
	4.7 Compaction specifications
	4.8 Field determination of compaction characteristics
		4.8.1 In-place density and water content
		4.8.2 Other field tests for compacted soils
		4.8.3 Large-scale field tests for compacted soils
	References
5: Excavations and trenching
	5.1 Introduction
	5.2 Causes of soil instability in excavations and trenches
		5.2.1 Increase in soil water content
		5.2.2 Loss of soil strength by unloading
		5.2.3 Vibrations
		5.2.4 Non-uniform soil conditions
		5.2.5 Surcharge loading adjacent to excavation
		5.2.6 Time
		5.2.7 Water seepage
		5.2.8 Soil freezing
	5.3 Indicators of excavation instability
		5.3.1 Tension cracks
		5.3.2 Subsidence or depressions
		5.3.3 Toppling or falling of surface soil
		5.3.4 Very wet soils
		5.3.5 Surface water
		5.3.6 Bulging soils
		5.3.7 Sloughing/sliding
		5.3.8 Lateral movement of shoring/shields
	5.4 Trenches and trench safety
		5.4.1 Definition of an excavation and a trench
	5.5 OSHA soil types
		5.5.1 Visual inspection—Identification
		5.5.2 Hand-dilatency test
		5.5.3 Dry strength test
		5.5.4 Plasticity “ribbon” or “thread” test
		5.5.5 Determining unconfined compressive strength
			5.5.5.1 Laboratory unconfined compression test
			5.5.5.2 Pocket Penetrometer
			5.5.5.3 Torvane
			5.5.5.4 Inspection Vane
			5.5.5.5 Drive Cone Penetrometer (DCP)
	5.6 Stability of vertical cuts
	5.7 Sloping
		5.7.1 Simple slopes
		5.7.2 Benched cuts—Single bench and multiple benches
		5.7.3 Simple slope with unsupported vertical lower portion
		5.7.4 Simple slope with vertical supported or shielded lower section
	5.8 Shoring
		5.8.1 Timber shoring
		5.8.2 Sheeting as shoring
		5.8.3 Mechanical shoring
		5.8.4 Hydraulic shoring
	5.9 Shielding
	5.10 Braced excavations
	5.11 Safety checklist for trench and other excavations
	References
6: Foundations
	6.1 Introduction
	6.2 Foundation design considerations
	6.3 Shallow foundations
		6.3.1 Continuous-strip footings
		6.3.2 Individual isolated footings
		6.3.3 Combined footings
		6.3.4 Mat foundations
		6.3.5 Ring footings
		6.3.6 Slab-on-grade as a shallow foundation
		6.3.7 Additional design and construction considerations for shallow foundations
			6.3.7.1 Frost depth
			6.3.7.2 High groundwater table
	6.4 Deep foundations
	6.5 Driven deep foundations
		6.5.1 Small-displacement driven piles
		6.5.2 Large-displacement driven piles
		6.5.3 Driven cast-in-place piles
		6.5.4 Driven fiber-reinforced polymer (FRP) piles
		6.5.5 Fin piles
		6.5.6 Ductile iron pipe piles
		6.5.7 Driven piles—Changes in soil properties from driving and aging
	6.6 Drilled deep foundations
		6.6.1 Bored open-hole continuous-flight auger (CFA) piles
		6.6.2 Auger-cast-in-place piles (ACIP)
		6.6.3 Straight-sided drilled shafts
			6.6.3.1 Dry method
			6.6.3.2 Casing method
			6.6.3.3 Slurry method
		6.6.4 Enlarged-base (Belled) drilled shafts
		6.6.5 Multi-bell drilled shafts
		6.6.6 Rock sockets
		6.6.7 Post grouting drilled shafts
		6.6.8 Pressure-Injected Footings (PIFs)
		6.6.9 Drilled displacement piles
			6.6.9.1 Atlas piles
			6.6.9.2 Olivier piles
			6.6.9.3 Fundex piles
			6.6.9.4 Dewaal, Omega, Berkel, and SVV piles
			6.6.9.5 SVB partial displacement piles
			6.6.9.6 Helical cast-in-place displacement piles (HCIPD)
			6.6.9.7 Continuous helical displacement piles
		6.6.10 Installation monitoring of ACIP and ACIPD piles
		6.6.11 Drilled piles—Changes in soil properties from drilling and aging
		6.6.12 Grout factor
	6.7 Other piles
		6.7.1 Helical piles
		6.7.2 Jetted piles
		6.7.3 Press-in piling
		6.7.4 Expander body piles
	6.8 Foundations in uplift
	6.9 Underpinning/upgrading existing foundations
		6.9.1 Micropiles
		6.9.2 Pushed (Jacked) minipiles
		6.9.3 Helical piles
		6.9.4 Grouted-shaft helical micropiles (GSHM)
		6.9.5 Expander body piles
	References
7: Earth retention and earth anchors
	7.1 Introduction
	7.2 Gravity and cantilever retaining walls
		7.2.1 Gravity walls
		7.2.2 Cantilever walls
	7.3 Sheet-pile walls
	7.4 Crib/bin walls
	7.5 Soldier pile and lagging walls
	7.6 Secant walls
	7.7 Mechanically stabilized earth (MSE) walls
	7.8 Shotcrete walls
	7.9 Internally braced excavations
	7.10 Earth anchors
		7.10.1 Grouted anchors
		7.10.2 Helical anchors
		7.10.3 Soil nails
		7.10.4 Expander body anchors
	References
8: Ground improvement
	8.1 Introduction
	8.2 Evaluating existing ground conditions and the need for ground improvement
	8.3 Ground improvement by removal and replacement
		8.3.1 Removal and replacement without reinforcement
		8.3.2 Removal and replacement with reinforcement
	8.4 Ground improvement of loose, coarse-grained soils by densification
		8.4.1 Surface rolling by vibratory rollers
		8.4.2 Surface impact rollers
		8.4.3 Rapid Impact Compaction (RIC)
		8.4.4 Deep Dynamic Compaction (DDC)
		8.4.5 Deep vibro-compaction/vibroflotation (VC)
		8.4.6 Deep Explosive Compaction (DEC)
		8.4.7 Compaction grouting (CG)
	8.5 Ground improvement of soft, fine-grained soils by consolidation
		8.5.1 Consolidation by surcharge preloading
		8.5.2 Consolidation by surcharge preloading with wick drains
		8.5.3 Consolidation by vacuum preloading
	8.6 Ground improvement of fine-grained soils by admixing
		8.6.1 Dry mixing of chemical admixtures
			8.6.1.1 Admixing with lime
			8.6.1.2 Lime piles
			8.6.1.3 Admixing with cement
		8.6.2 Deep mixing method: Soil-cement columns and soil-lime columns
		8.6.3 Wet placement—Lime slurry injection
	8.7 Ground improvement by reinforcement
		8.7.1 Stone columns
		8.7.2 Compacted sand piles
		8.7.3 Rammed Aggregate Piers™ (RAPs)
		8.7.4 Controlled Modulus Columns™
		8.7.5 Vibro-Concrete Columns
	References
9: Problematic soils
	9.1 Introduction
	9.2 Highly compressible organic soils
		9.2.1 Occurrence of organic soils
		9.2.2 Identification of organic soils
		9.2.3 Mitigation practices for organic soils
	9.3 Liquefiable coarse-grained soils
		9.3.1 Occurrence of liquefiable coarse-grained soils
		9.3.2 Identification of liquefiable coarse-grained soils
		9.3.3 Mitigation practices for liquefiable coarse-grained soils
	9.4 Collapsible soils
		9.4.1 Occurrence of collapsible soils
		9.4.2 Identification of collapsible soils
			9.4.2.1 Indirect methods
			9.4.2.2 Direct methods
		9.4.3 Collapse “Sensitivity”
		9.4.4 Mitigation practices for collapsible soils
	9.5 Expansive soils
		9.5.1 Occurrence of expansive soils
		9.5.2 Identification of expansive fine-grained soils
			9.5.2.1 Indirect methods
			9.5.2.2 Free Swell Test
			9.5.2.3 Direct methods
		9.5.3 Swell “Sensitivity”
		9.5.4 Shrinkage behavior
			9.5.4.1 Linear shrinkage test to describe shrinkage behavior
			9.5.4.2 Shrink Test
			9.5.4.3 Shrink “Sensitivity”
		9.5.5 Mitigation practices for expansive soils
	9.6 Highly sensitive “quick” clays
		9.6.1 Occurrence of “quick” clays
		9.6.2 Identification of “quick” clays
		9.6.3 Mitigation practices for “quick” clays
	9.7 Dispersive soils
		9.7.1 Occurrence of dispersive soils
		9.7.2 Identification of dispersive soils
			9.7.2.1 Double Hydrometer Test
			9.7.2.2 Pinhole Dispersion Test
		9.7.3 Mitigation practices for dispersive soils
	9.8 Corrosive soils
		9.8.1 Introduction
		9.8.2 Laboratory tests for corrosion potential
			9.8.2.1 pH tests
			9.8.2.2 Electrical resistivity
		9.8.3 Corrosivity rating
	9.9 High-sulfate soils
	9.10 Unusual or special soil conditions
	References
10: Inspection of geoconstruction
	10.1 Introduction
	10.2 Inspection of shallow foundation construction
		10.2.1 Verify footing locations, dimensions, and elevations
		10.2.2 Evaluate subgrade
		10.2.3 Observation of placement of reinforcement and concrete
		10.2.4 Quality assurance of concrete
		10.2.5 Observation of backfill placement
		10.2.6 After construction
	10.3 Inspection of driven piles
		10.3.1 Before installation
		10.3.2 During installation
		10.3.3 After installation
	10.4 Inspection of drilled shafts, bored piles, and micropiles
		10.4.1 Contractor setup
		10.4.2 Shaft excavation
		10.4.3 Reinforcement and concrete placement
		10.4.4 Post-installation record
	10.5 Inspection of helical piles
		10.5.1 Before installation
		10.5.2 During installation
		10.5.3 After installation
	10.6 Inspection of ground anchors
		10.6.1 Contractor setup
		10.6.2 Anchor-hole excavation
		10.6.3 Reinforcement and concrete placement
		10.6.4 Post-installation record
	10.7 Inspection of ground improvement
	10.8 Inspector’s toolkit
Index




نظرات کاربران