دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Damian Beben
سری:
ISBN (شابک) : 3030347877, 9783030347871
ناشر: Springer
سال نشر: 2020
تعداد صفحات: 224
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 13 مگابایت
در صورت تبدیل فایل کتاب Soil-Steel Bridges: Design, Maintenance and Durability (Geotechnical, Geological and Earthquake Engineering, 49) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب پل های خاکی- فولادی: طراحی، نگهداری و دوام (ژئوتکنیک، زمین شناسی و مهندسی زلزله، 49) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
هدف اصلی این کتاب ارائه مجموعهای از تحلیلها و مشخصات طراحی برای پلها و پلهای فولادی خاکی است که سازههای انعطافپذیر نیز نامیده میشوند. مختصر اما آموزنده، این راهنما بر اساس یک رویکرد جستجوی سریع برای برنامه های کاربردی کد، طراحی و تجزیه و تحلیل روش ها / محاسبات و همچنین برنامه ها و مثال های حل شده است. این کتاب به جنبههای منحصربهفرد پلهای فولادی خاکی میپردازد: طراحی و تجزیه و تحلیل و همچنین نمونههایی از کاربردها، تکنیکهای تحلیل عددی و مدلسازی، مشکلات خوردگی و دوام، عمر مفید و نگهداری، و تأثیر بارهای متحرک.
The primary objective of this book is to provide designers with a set of analysis and design specifications for soil-steel bridges and culverts, also called flexible structures. Brief but informative, this guide is based on a quick look up approach to code applications, design and analysis methods/calculations as well as applications and solved examples. The book addresses the unique aspects of soil-steel bridges: design and analysis as well as examples of applications, numerical analysis and modeling techniques, corrosion and durability problems, service life and maintenance, and impact of moving loads.
Preface Contents Chapter 1: Introduction 1.1 General 1.2 Short Historic Outline 1.3 Problems in Soil-Steel Bridges 1.4 Basic Terms and Definitions References Chapter 2: Selected Issues of Soil-Steel Bridge Design and Analysis 2.1 Code Requirements and Design Methods 2.1.1 General Notes 2.1.2 Swedish Design Method (Pettersson and Sundquist 2014) 2.1.2.1 The Range of Method Application 2.1.2.2 Requirements for Backfill 2.1.2.3 General Rules of Design 2.1.2.4 Design Procedure in the Swedish Design Method 2.1.2.5 Reduction of Soil Cover Depth over the Structure 2.1.2.6 Normal Force Caused by Backfilling Process 2.1.2.7 Normal Force Caused by Live Loads Equivalent Line Load 2.1.2.8 Design Normal Force 2.1.2.9 Bending Moments Caused by Backfill Load Caused by Live Loads Distribution of Bending Moments in Soil-Steel Bridges with Different Cross Sections Design Bending Moments 2.1.2.10 The Safety Before the Beginning of Yielding in the Shell Structure Wall in the SLS 2.1.2.11 Verifications in the ULS The Possibility of the Plastic Hinges Appearance in the Top Section of the Shell Structure 2.1.2.12 Verification of Load-Carrying Capacity of the Bottom Part of the Structure 2.1.2.13 Check the Strengths of the Screw Joints Bending Capacity of the Screw Joints Shear Force Tension Force Interaction in Screws 2.1.2.14 Verification of Corrugated Plate Wall At the Corners Due to Radial Soil Pressure 2.1.2.15 Fatigue Design 2.1.2.16 Fatigue Strength of the CSP Sheets 2.1.2.17 Fatigue Strength of the Screwed Joints 2.1.2.18 Behaviour of Shell Structure Under Construction Loads 2.1.3 The AASHTO Method (AASHTO LFRD 2017) 2.1.3.1 Calculation of Normal Thrust in the Shell of Soil-Steel Bridge 2.1.3.2 Load Distribution Through Backfill 2.1.3.3 Buckling 2.1.3.4 The Screw Joint Strength 2.1.3.5 Handling Stiffness 2.1.3.6 Requirements for Backfill Minimum Soil Cover Depth Design of Soil-Steel Bridges with Box Cross-Section 2.1.3.7 Special Elements Supporting the Load-Carrying Capacity 2.1.4 The CHBDC Method (CHBDC 2014) 2.1.4.1 Determination of the Backfill Extent 2.1.4.2 Calculation of Thrust in the Wall of a Shell Structure Thrust in the Structure Wall from Dead Loads Thrust in the Wall from Live Loads 2.1.4.3 Strength of a Structure Wall in Compression 2.1.4.4 Load-Carrying Capacity at Construction Stage - Combined Effect of Bending and Compression 2.1.4.5 Load-Carrying Capacity of a Structure under Service 2.1.4.6 Strength of Screw Joints 2.1.4.7 Seismic Loads 2.1.4.8 Design of Soil-Steel Bridges with Box Cross-Section Calculating Internal Forces Bending Moment from Dead Loads Bending Moment from Live Loads Calculation of Force Acting on the Foundation Determination of Screw Connections 2.1.4.9 Fatigue Strength 2.1.5 Design of Soil-Steel Bridges with Long-Span (McGrath et al. 2002) 2.1.5.1 Live Load Distribution 2.1.5.2 Forces During Backfill Process 2.1.5.3 Bending Stiffness in ULS At the Time of Backfilling 2.1.5.4 Bending Moments 2.1.5.5 Buckling 2.1.5.6 Handling Stiffness 2.1.5.7 Combined Effect of Bending Moment and Compression Force 2.1.5.8 Special Elements Supporting the Load-Carrying Capacity of Soil-Steel Bridges 2.1.6 Discussion 2.1.6.1 Pipe-Arch Structure 2.1.6.2 Box Structure 2.1.7 Recapitulation 2.2 Construction of Soil-Steel Bridges 2.2.1 Introduction 2.2.2 Elements of Corrugated Plate and Shell Profiles 2.2.3 Construction-Assembly Works 2.2.3.1 Assembly of Corrugated Plate Elements 2.2.3.2 Earthworks 2.2.4 Reinforcing Bridges with Use of CSP Structures 2.2.4.1 Relining Method 2.2.4.2 Ways of Installation of Reinforcement Structures 2.2.4.3 Methods to Fill the Empty Space Between the Old and the New Structure Preparation of Subsoil Filling the Empty Space Between the Structures 2.2.5 Summary 2.3 Design Problems and Construction Mistakes in Soil-Steel Bridges 2.3.1 Introduction 2.3.2 Design Problems and Errors 2.3.3 Construction Phase Mistakes 2.3.4 Summary 2.4 FEM Analysis of Soil-Steel Bridges and Culverts 2.4.1 Introduction and State of the Art 2.4.2 Description of Numerical Modelling 2.4.2.1 General Remarks 2.4.2.2 Material Characteristics 2.4.2.3 Interaction Between Various Materials 2.4.3 Examples of Numerical Results 2.4.3.1 Box Culvert 2.4.3.2 Pipe-Arch 2.4.3.3 Soil-Steel Bridge with RC Relieving Slab 2.4.3.4 Soil-Steel Bridge with Flat Plates vs. Corrugated Plates 2.4.4 Summary References Chapter 3: Corrosion Problem of Soil-Steel Bridges 3.1 Introduction 3.2 Beginnings of Corrosion 3.3 Soil Corrosivity Problem 3.3.1 Introduction 3.3.2 Effect of Soil Resistivity 3.3.3 Effect of Soil pH and Moisture Content 3.4 Atmospheric Corrosion 3.4.1 General Remarks 3.4.2 Changes in Air Caused by Acidification of the Environment and its Influence upon Corrosion 3.5 Corrosion in Water and Erosion-Abrasion Damages 3.6 Mathematical Model of Corrosion Description of a Soil-Steel Bridge 3.6.1 Introduction 3.6.2 Model Describing Propagation of Corrosion Damages 3.6.3 Model of Corrosive Damage 3.6.4 Formation of Corrosive Cracks 3.7 Corrosion and Abrasion Protection 3.8 Recapitulation References Chapter 4: Testing and Durability of Soil-Steel Bridges 4.1 Introduction 4.2 Testing of Soil-Steel Bridges Under Service Loads 4.2.1 Introduction 4.2.2 Impact of the Road and Railway Service Loads 4.2.3 Dynamic Amplification Factors in Soil-Steel Bridges 4.2.4 Load Rating of Soil-Steel Bridges 4.3 Durability Tests of the Backfill Corrosivity 4.3.1 Introduction 4.3.2 Soil Resistivity 4.3.3 Study on Acidity and Moisture Content 4.3.4 Discussion of Test Results 4.3.5 Summary 4.4 Deformation of the Backfill Caused by the Traffic Live Load 4.4.1 Introduction 4.4.2 Characteristics of the Problem 4.4.3 Damping in Soil Medium (Backfill) 4.4.4 Mathematic Model of Soil Deformation 4.5 Summary References Final Recapitulation