دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Alain Abran
سری:
ISBN (شابک) : 1118954084, 9781118954089
ناشر: Wiley-IEEE Computer Society Pr
سال نشر: 2015
تعداد صفحات: 290
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 9 مگابایت
در صورت تبدیل فایل کتاب Software Project Estimation: The Fundamentals for Providing High Quality Information to Decision Makers به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب برآورد پروژه نرم افزاری: مبانی ارائه اطلاعات با کیفیت بالا به تصمیم گیرندگان نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب مفاهیم نظری را برای توضیح مبانی طراحی و ارزیابی مدل های برآورد نرم افزار معرفی می کند. این نرم افزار اطلاعات حیاتی را در مورد بهترین نرم افزار مدیریت نرم افزار در اختیار متخصصان نرم افزار قرار می دهد.
This book introduces theoretical concepts to explain the fundamentals of the design and evaluation of software estimation models. It provides software professionals with vital information on the best software management software out there.
Cover Title Page Copyright Contents Foreword Overview Acknowledgments About the Author Part I Understanding the Estimation Process Chapter 1 The Estimation Process: Phases and Roles 1.1 Introduction 1.2 Generic Approaches in Estimation Models: Judgment or Engineering? 1.2.1 Practitioner\'s Approach: Judgment and Craftsmanship 1.2.2 Engineering Approach: Modest-One Variable at a Time 1.3 Overview of Software Project Estimation and Current Practices 1.3.1 Overview of an Estimation Process 1.3.2 Poor Estimation Practices 1.3.3 Examples of Poor Estimation Practices 1.3.4 The Reality: A Tally of Failures 1.4 Levels of Uncertainty in an Estimation Process 1.4.1 The Cone of Uncertainty 1.4.2 Uncertainty in a Productivity Model 1.5 Productivity Models 1.6 The Estimation Process 1.6.1 The Context of the Estimation Process 1.6.2 The Foundation: The Productivity Model 1.6.3 The Full Estimation Process 1.7 Budgeting and Estimating: Roles and Responsibilities 1.7.1 Project Budgeting: Levels of Responsibility 1.7.2 The Estimator 1.7.3 The Manager (Decision-Taker and Overseer) 1.8 Pricing Strategies 1.8.1 Customers-Suppliers: The Risk Transfer Game in Estimation 1.9 Summary - Estimating Process, Roles, and Responsibilities Exercises Term Assignments Chapter 2 Engineering and Economics Concepts for Understanding Software Process Performance 2.1 Introduction: The Production (Development) Process 2.2 The Engineering (and Management) Perspective on a Production Process 2.3 Simple Quantitative Process Models 2.3.1 Productivity Ratio 2.3.2 Unit Effort (or Unit Cost) Ratio 2.3.3 Averages 2.3.4 Linear and Non-Linear Models 2.4 Quantitative Models and Economics Concepts 2.4.1 Fixed and Variable Costs 2.4.2 Economies and Diseconomies of Scale 2.5 Software Engineering Datasets and Their Distribution 2.5.1 Wedge-Shaped Datasets 2.5.2 Homogeneous Datasets 2.6 Productivity Models: Explicit and Implicit Variables 2.7 A Single and Universal Catch-All Multidimensional Model or Multiple Simpler Models? 2.7.1 Models Built from Available Data 2.7.2 Models Built on Opinions on Cost Drivers 2.7.3 Multiple Models with Coexisting Economies and Diseconomies of Scale Exercises Term Assignments Chapter 3 Project Scenarios, Budgeting, and Contingency Planning 3.1 Introduction 3.2 Project Scenarios for Estimation Purposes 3.3 Probability of Underestimation and Contingency Funds 3.4 A Contingency Example for a Single Project 3.5 Managing Contingency Funds at the Portfolio Level 3.6 Managerial Prerogatives: An Example in the AGILE Context 3.7 Summary Further Reading: A Simulation for Budgeting at the Portfolio Level Exercises Term Assignments Part II Estimation Process: What Must be Verified? Chapter 4 What Must be Verified in an Estimation Process: An Overview 4.1 Introduction 4.2 Verification of the Direct Inputs to An Estimation Process 4.2.1 Identification of the Estimation Inputs 4.2.2 Documenting the Quality of These Inputs 4.3 Verification of the Productivity Model 4.3.1 In-House Productivity Models 4.3.2 Externally Provided Models 4.4 Verification of the Adjustment Phase 4.5 Verification of the Budgeting Phase 4.6 Re-Estimation and Continuous Improvement to the Full Estimation Process Further Reading: The Estimation Verification Report Exercises Term Assignments Chapter 5 Verification of the Dataset Used to Build the Models 5.1 Introduction 5.2 Verification of DIRECT Inputs 5.2.1 Verification of the Data Definitions and Data Quality 5.2.2 Importance of the Verification of the Measurement Scale Type 5.3 Graphical Analysis - One-Dimensional 5.4 Analysis of the Distribution of the Input Variables 5.4.1 Identification of a Normal (Gaussian) Distribution 5.4.2 Identification of Outliers: One-Dimensional Representation 5.4.3 Log Transformation 5.5 Graphical Analysis - Two-Dimensional 5.6 Size Inputs Derived from a Conversion Formula 5.7 Summary Further Reading: Measurement and Quantification Exercises Term Assignments Exercises-Further Reading Section Term Assignments-Further Reading Section Chapter 6 Verification of Productivity Models 6.1 Introduction 6.2 Criteria Describing the Relationships Across Variables 6.2.1 Simple Criteria 6.2.2 Practical Interpretation of Criteria Values 6.2.3 More Advanced Criteria 6.3 Verification of the Assumptions of the Models 6.3.1 Three Key Conditions Often Required 6.3.2 Sample Size 6.4 Evaluation of Models by Their Own Builders 6.5 Models Already Built-Should You Trust Them? 6.5.1 Independent Evaluations: Small-Scale Replication Studies 6.5.2 Large-Scale Replication Studies 6.6 Lessons Learned: Distinct Models by Size Range 6.6.1 In Practice, Which is the Better Model? 6.7 Summary Exercises Term Assignments Chapter 7 Verification of the Adjustment Phase 7.1 Introduction 7.2 Adjustment Phase in the Estimation Process 7.2.1 Adjusting the Estimation Ranges 7.2.2 The Adjustment Phase in the Decision-Making Process: Identifying Scenarios for Managers 7.3 The Bundled Approach in Current Practices 7.3.1 Overall Approach 7.3.2 Detailed Approach for Combining the Impact of Multiple Cost Drivers in Current Models 7.3.3 Selecting and Categorizing Each Adjustment: The Transformation of Nominal Scale Cost Drivers into Numbers 7.4 Cost Drivers as Estimation Submodels! 7.4.1 Cost Drivers as Step Functions 7.4.2 Step Function Estimation Submodels with Unknown Error Ranges 7.5 Uncertainty and Error Propagation 7.5.1 Error Propagation in Mathematical Formulas 7.5.2 The Relevance of Error Propagation in Models Exercises Term Assignments Part III Building Estimation Models: Data Collection and Analysis Chapter 8 Data Collection and Industry Standards: The ISBSG Repository 8.1 Introduction: Data Collection Requirements 8.2 The International Software Benchmarking Standards Group 8.2.1 The ISBSG Organization 8.2.2 The ISBSG Repository 8.3 ISBSG Data Collection Procedures 8.3.1 The Data Collection Questionnaire 8.3.2 ISBSG Data Definitions 8.4 Completed ISBSG Individual Project Benchmarking Reports: Some Examples 8.5 Preparing to Use the ISBSG Repository 8.5.1 ISBSG Data Extract 8.5.2 Data Preparation: Quality of the Data Collected 8.5.3 Missing Data: An Example with Effort Data Further Reading 1: Benchmarking Types Further Reading 2: Detailed Structure of the ISBSG Data Extract Exercises Term Assignments Chapter 9 Building and Evaluating Single Variable Models 9.1 Introduction 9.2 Modestly, One Variable at a Time 9.2.1 The Key Independent Variable: Software Size 9.2.2 Analysis of the Work-Effort Relationship in a Sample 9.3 Data Preparation 9.3.1 Descriptive Analysis 9.3.2 Identifying Relevant Samples and Outliers 9.4 Analysis of the Quality and Constraints of Models 9.4.1 Small Projects 9.4.2 Larger Projects 9.4.3 Implication for Practitioners 9.5 Other Models by Programming Language 9.6 Summary Exercises Term Assignments Chapter 10 Building Models with Categorical Variables 10.1 Introduction 10.2 The Available Dataset 10.3 Initial Model with a Single Independent Variable 10.3.1 Simple Linear Regression Model with Functional Size Only 10.3.2 Nonlinear Regression Models with Functional Size 10.4 Regression Models with Two Independent Variables 10.4.1 Multiple Regression Models with Two Independent Quantitative Variables 10.4.2 Multiple Regression Models with a Categorical Variable: Project Difficulty 10.4.3 The Interaction of Independent Variables Exercises Term Assignments Chapter 11 Contribution of Productivity Extremes in Estimation 11.1 Introduction 11.2 Identification of Productivity Extremes 11.3 Investigation of Productivity Extremes 11.3.1 Projects with Very Low Unit Effort 11.3.2 Projects with Very High Unit Effort 11.4 Lessons Learned for Estimation Purposes Exercises Term Assignments Chapter 12 Multiple Models from a Single Dataset 12.1 Introduction 12.2 Low and High Sensitivity to Functional Size Increases: Multiple Models 12.3 The Empirical Study 12.3.1 Context 12.3.2 Data Collection Procedures 12.3.3 Data Quality Controls 12.4 Descriptive Analysis 12.4.1 Project Characteristics 12.4.2 Documentation Quality and Its Impact on Functional Size Quality 12.4.3 Unit Effort (in Hours) 12.5 Productivity Analysis 12.5.1 Single Model with the Full Dataset 12.5.2 Model of the Least Productive Projects 12.5.3 Model of the Most Productive Projects 12.6 External Benchmarking with the ISBSG Repository 12.6.1 Project Selection Criteria and Samples 12.6.2 External Benchmarking Analysis 12.6.3 Further Considerations 12.7 Identification of the Adjustment Factors for Model Selection 12.7.1 Projects with the Highest Productivity (i.e., the Lowest Unit Effort) 12.7.2 Lessons Learned Exercises Term Assignments Chapter 13 Re-Estimation: A Recovery Effort Model 13.1 Introduction 13.2 The Need for Re-Estimation and Related Issues 13.3 The Recovery Effort Model 13.3.1 Key Concepts 13.3.2 Ramp-Up Process Losses 13.4 A Recovery Model When a Re-Estimation Need is Recognized at Time T>0 13.4.1 Summary of Recovery Variables 13.4.2 A Mathematical Model of a Recovery Course in Re-Estimation 13.4.3 Probability of Underestimation -p(u) 13.4.4 Probability of Acknowledging the Underestimation on a Given Month -p(t) Exercises Term Assignments References Index EULA