دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1st ed. 2022]
نویسندگان: Roger Lee (editor)
سری:
ISBN (شابک) : 3030923169, 9783030923167
ناشر: Springer
سال نشر: 2022
تعداد صفحات: 204
زبان: English
فرمت فایل : EPUB (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 23 Mb
در صورت تبدیل فایل کتاب Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (Studies in Computational Intelligence, 1012) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مهندسی نرم افزار، هوش مصنوعی، شبکه و محاسبات موازی/توزیع شده (مطالعات در هوش محاسباتی، 1012) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب نتایج علمی بیست و دومین کنفرانس مجازی پاییز
بینالمللی ACIS در زمینه مهندسی نرمافزار، هوش مصنوعی، شبکه و
محاسبات موازی/توزیع شده (SNPD2021-Fall) را ارائه میکند که در
24 تا 26 نوامبر 2021 در تایچونگ، تایوان برگزار شد. هدف از
برگزاری این کنفرانس گرد هم آوردن محققان و دانشمندان، تجار و
کارآفرینان، معلمان، مهندسان، کاربران کامپیوتر و دانشجویان بود
تا در زمینههای متعدد علوم کامپیوتر بحث و تبادل نظر کنند و
تجربیات خود را به اشتراک بگذارند و ایدهها و اطلاعات جدید را به
صورت معنادار تبادل کنند. نتایج تحقیقات در مورد تمامی جنبهها
(نظریه، کاربردها و ابزارها) علوم کامپیوتر و اطلاعات و بحث در
مورد چالشهای عملی پیشرو در این مسیر و راهحلهای اتخاذ شده
برای حل آنها.
برگزارکنندگان کنفرانس بهترین مقالات را از بین مقالات پذیرفته
شده برای ارائه در کنفرانس انتخاب کردند. مقالات بر اساس نمرات
بررسی ارسال شده توسط اعضای کمیته برنامه انتخاب شدند و تحت
دورهای دقیق بررسی قرار گرفتند. از این دور دوم بررسی، 13 مقاله
امیدوارکننده در این کتاب Springer (SCI) و نه مجموعه مقالات
کنفرانس منتشر میشوند. ما بی صبرانه منتظر کمک های مهمی هستیم که
می دانیم این نویسندگان در زمینه علوم کامپیوتر و اطلاعات خواهند
آورد.
This book presents scientific results of the 22nd ACIS
International Fall Virtual Conference on Software Engineering,
Artificial Intelligence, Networking and Parallel/Distributed
Computing (SNPD2021-Fall) which was held on November 24–26,
2021, at Taichung, Taiwan. The aim of this conference was to
bring together researchers and scientists, businessmen and
entrepreneurs, teachers, engineers, computer users, and
students to discuss the numerous fields of computer science and
to share their experiences and exchange new ideas and
information in a meaningful way. Research results about all
aspects (theory, applications and tools) of computer and
information science, and to discuss the practical challenges
encountered along the way and the solutions adopted to solve
them.
The conference organizers selected the best papers from those
papers accepted for presentation at the conference. The
papers were chosen based on review scores submitted by members
of the program committee and underwent further rigorous rounds
of review. From this second round of review, 13 of most
promising papers are then published in this Springer (SCI) book
and not the conference proceedings. We impatiently await the
important contributions that we know these authors will bring
to the field of computer and information science.
Preface Organization International Program Committee General Chair Conference Chairs Program Chairs Registration Co-chair Local Arrangements Chair Publicity Co-chair Finance Chair Publication Chairs Committee Members SNPD 2021-Fall Program Committee Contents Contributors Segmentation of Spinal MRI Images and New Compression Fracture Detection Abstract 1 Introduction 2 Methodology 2.1 Segmentation of Spinal 2.1.1 Data Augmentation 2.1.2 U-Net Architecture 2.1.3 Binary Cross Entropy 2.1.4 Dice Loss 2.2 Vertebra Regions Segmentation 2.2.1 False Vertebra Regions Removing 2.2.2 Noise Removing Operation 2.2.3 Hole Filling Operation 2.2.4 Opening Operation 2.3 Gamma Correction 2.4 Symptoms Classification 2.4.1 ResNet50 Architecture 2.4.2 Oversampling + Undersampling 2.4.3 Class Weight 3 Experiment Result 3.1 Segmentation Result 3.2 Classification Result 3.2.1 Model Comparing 3.2.2 Data Imbalance Problem 3.2.3 Classification Methods 3.2.4 Gamma Correction 3.2.5 Results Presentation 3.3 Result Analysis 3.3.1 Normal Vertebra is Misjudged as Old Compression Fracture 3.3.2 Distinction Between New and Old Compression Fractures 3.3.3 MRI Image of No Screw Features 4 Conclusions References Key Issues for Digital Factory Designing and Planning: A Survey 1 Introduction 2 Research on Key Issues of DF from Perspectives of Networking, Precision, Automation and Digitalization 3 Research on Key Technologies of 5G Network, Time Sensitive Network and Digital Twin 4 Conclusion References Concentration-Based Robot Control Method with FPGA 1 Introduction 2 Method Implementation 2.1 Framework of the Control Method 2.2 Hardware of the Control Method 2.3 Software of the Control Method 2.4 Android App 3 Method Performance Test 4 Conclusion References SolarWinds Software Supply Chain Security: Better Protection with Enforced Policies and Technologies Abstract 1 Introduction 2 SolarWinds Software Supply Chain Breaches 3 SolarWinds Software Supply Chain Attack on Policies 3.1 Market Incentives for Security 3.2 ‘Additive’ Security to ‘Reductive’ Security 3.3 No Updates if Unnecessary 3.4 Tool Development for Customers to Evaluate Security on Updates 3.5 Ubiquitous Use of Strong Encryption and Regular Movement of Sensitive Data on Clouds and Fogs 3.6 Attempts to Apply AI and Quantum-Based Approach 4 Ways to Detect and Protect Against 4.1 Software Composition Analysis (SCA) 4.2 CHIRP (CISA Hunt and Incident Response Program) 4.3 The SootDiff System 4.4 The In-toto System 5 Conclusion and Future Work References A Data Hiding Technology by Applying Interpolation in Extended Local Binary Pattern Abstract 1 Introduction 2 Related Method 3 Proposed Method 4 Experimental Results 5 Conclusions Acknowledgements References Insect Species Identification System Based on Deep Learning Abstract 1 Introduction 1.1 Background and Motivation 1.2 Purpose 1.3 Thesis Structure 2 Research Methods and Procedures 2.1 RGB Image and YUV Image Conversion 2.1.1 Gamma Correction 2.2 Object Detection Model 2.2.1 Basic Concepts of YOLO 2.2.2 Input and Output of Detection Model 2.3 Contrast Limited Adaptive Histogram Equalization (Clahe) 2.4 Species Identification Model 2.4.1 GoogLeNet Inception-v4 Structure 2.4.2 Input and Output of the Species Identification Model 2.5 RGB Normalization 2.6 Combined Model 3 Experimental Results and Discussion 3.1 Experimental Image Dataset 3.2 Experimental Results of Object Detection 3.2.1 Evaluation Criteria for Experimental Results 3.2.2 Experimental Results of the Object Detection Model 3.2.3 Discussion of Object Detection Results 3.3 Experimental Results of Species Identification 3.3.1 Evaluation Criteria for Experimental Results 3.3.2 Experimental Results of the Primary Identification Model 3.3.3 Experimental Results of the Secondary Identification Model 3.3.4 Experimental Results of Combined Model of Primary and Secondary Identification Models 3.3.5 Discussion of Species Identification Results 4 Conclusions and Future Prospects References Study of DIFA Based Learning Data Generating Methodology for Malware Detection 1 Introduction 2 IT Trends and Analysis Environment 2.1 Information Service Trends and Security Environment 2.2 Malware Trends 2.3 Malware Analysis Environment 3 Machine Learning in Malware Analysis 3.1 Advantage of Applying Machine Learning to Analysis Malware 3.2 Tries of Applying Machine Learning About Analysis Malware 4 DIFA Learning Data Transforming Methodology for Application Misuse Detection 4.1 Machine Learning Requirement for Analysis Malware 4.2 Data Transforming Methodology for Malware Analysis Detection 4.3 Data Generation Method at Kernel Event for Malware Analysis 5 Implement 5.1 Implement Environment 5.2 Detection Rate by Learning Model 5.3 Detection Rate Analysis 6 Conclusion References A Study on the Effect of Educational Service Quality on Career Decision-Making Self-efficacy Abstract 1 Introduction 2 Theoretical Background 2.1 Educational Service Quality 2.2 Learning Flow and Educational Satisfaction 2.3 Academic Achievement and Career Decision-Making Self-efficacy 3 Research Model and Hypotheses 3.1 Research Model and Hypotheses 3.2 Measurement and Analysis Method 4 Empirical Analysis 4.1 Data Collection and the Characteristics of Samples 4.2 Analysis of the Measurement Model 4.3 Structural Model and Hypothesis Verification 5 Conclusion 5.1 Study Results 5.2 Implications of the Study References Nanotechnology Performance Analysis Using Topic Modeling and Social Network Analysis: Focusing on NTIS Data in Korea (2015–2019) Abstract 1 Introduction 2 Theoretical Background and Hypotheses 2.1 Nano Technology 2.2 Nano Technology Trend Analysis 3 Research Method 3.1 Topic Modeling Analysis 3.2 Text Network Analysis 4 Empirical Analysis 4.1 Topic Modeling Analysis 4.2 Text Network Analysis 4.2.1 Analysis of Key Factors Affecting Nanotechnology Performance 4.2.2 Analysis of Major Nanotechnology Achievements by Period 4.2.3 Analysis of Changes in Nanotechnology Performance Fields According to Time 5 Conclusions Acknowledgment References A Study on Korea TV Drama Ratings: Programming and Marketing Strategies Abstract 1 Introduction 2 Previous Studies 3 Data 4 Method 4.1 Multi Linear Regression 5 Experiment Design 5.1 Variables 6 Results 7 Conclusion Acknowledgement References Identifying the Public’s Changing Concerns During a Global Health Crisis: Text Mining and Comparative Analysis of Tweets During the COVID-19 Pandemic Abstract 1 Introduction 2 Methods 2.1 Data Acquisition 2.2 Text Mining 3 Results 3.1 #COVID19: February 28–March 5, 2020 3.2 #Coronavirus: February 28–March 5, 2020 3.3 #COVID19: June 15–June 21, 2020 3.4 #Coronavirus: June 15–June 21, 2020 4 Discussion 5 Conclusion/Limitation and Future Research Acknowledgement References The Discovery of Historical Transition in Aesthetic Notions Through Changes in Co-occurrence Words Mainly Used in Waka Poetry in Three Major Poetry Anthologies Abstract 1 Introduction 2 Related Works 2.1 Study on the Framework of Kago 2.2 Study on the History of Waka Expressions 2.3 Study on Classical Japanese Poetry by Pattern Extraction 2.4 Study on Waka Poetry Using Character N-Grams 2.5 Position of Our Study 3 The Discovery of Historical Transition in Aesthetic Notions Through Changes in Co-occurrence Words of Kago 3.1 Overview 3.2 Data Sets of Waka Poetry 3.3 Data Set of Kago 3.4 Morphological Analysis Function 3.5 Kago Extraction Function 3.6 Latent Meaning of Kago Extraction Function 4 Experiment 4.1 Experiment Environment 4.2 Experiment 1 (The Result of the Proportion of Kago Used in Each of the Three Major Anthologies) 4.3 Experiment 2 (The Results of the Verification of the Changes in Co-occurrence Words of Kago in Each of the Three Major Anthologies) 4.4 Experiment 3 (The Results of Changes in the Subjects on Which Waka Poets Put Their Thoughts) 4.5 Discussion 5 Conclusion Acknowledgments References Facial Expression Recognition Using Deep Learning Methods Abstract 1 Introduction 2 Related Work 3 Methodology 3.1 Preprocessing 3.2 Data Augmentation 3.3 Network Ensembles 3.4 Implementation 4 Experimental Study 4.1 Data Used 4.2 Results 5 Conclusions Acknowledgement References Author Index