دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1 ed.]
نویسندگان: Benoît Jones
سری:
ISBN (شابک) : 9780367419592, 1482254670
ناشر: CRC Press
سال نشر: 2022
تعداد صفحات: [582]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 25 Mb
در صورت تبدیل فایل کتاب Soft ground tunnel design به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب طراحی تونل زمین نرم نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Half title Title page Copyright Page Contents Preface Books on tunnel construction methods Acknowledgements Author 1. Real tunnel behaviour 1.1. In situ stress states 1.2. Overview of tunnel behaviour 1.2.1. Undrained soil behaviour 1.2.2. Drained soil behaviour 1.3. Movements of the ground surface 1.3.1. Transverse vertical settlements 1.3.2. Transient settlements 1.3.3. Horizontal surface movements 1.3.4. Long-term settlements 1.4. Subsurface ground movements 1.5. Stability 1.5.1. The consequences of instability 1.5.2. The causes of instability 1.6. Tunnel lining movements 1.6.1. Case studies of tunnel lining movements 1.7. Tunnel lining stresses 1.7.1. How do tunnel lining stresses develop over time? 1.7.2. Design based on precedent practice 1.7.3. Heathrow Express Terminal 4 Station concourse tunnel case study 1.8. Summary References 2. Undrained stability 2.1. Overview of stability theory 2.2. Undrained stability 2.2.1. Heading stability in homogeneous clay 2.2.2. Heading stability in clay with undrained shear strength increasing with depth 2.2.3. Heading stability in clay with overlying coarse-grained soils 2.2.4. Numerical modelling of heading stability in clay 2.2.5. Summary of undrained stability 2.3. Blow-out failure in clay 2.3.1. Softening and erosion 2.3.2. Hydraulic fracturing in clay 2.3.3. Passive failure in clay 2.3.4. Uplift failure of a tunnel heading invert in clay 2.3.5. Summary of undrained blow-out failure 2.4. Problems References 3. Drained stability 3.1. Drained stability without seepage 3.1.1. Dry cohesionless soils 3.1.2. Dry drained soils with cohesion 3.1.3. Comparison of analytical methods with centrifuge tests and finite element models 3.1.4. Summary of drained stability theory 3.2. Application of drained stability to closed-face TBMs 3.2.1. Application to slurry TBMs 3.2.2. Slurry infiltration during TBM standstills 3.2.3. Slurry infiltration during excavation 3.2.4. Application to earth pressure balance TBMs 3.3. Blow-out failure in drained soils 3.3.1. Passive failure in drained soils 3.3.2. Blow-outs caused by hydraulic fracturing 3.3.3. Summary of blow-outs in drained soils 3.4. Piping 3.5. Problems References 4. Stability of shafts 4.1. Hydraulic failure in a shaft during excavation 4.2. Base heave failure of a shaft in clay 4.3. Uplift failure in a shaft during excavation 4.3.1. Verification of the uplift ultimate limit state using Eurocode 7 4.3.2. Geometry of uplift failure during excavation 4.4. Uplift failure of a shaft after base slab construction 4.5. Long-term heave under a shaft base slab 4.6. Summary of shaft stability 4.7. Problems References 5. Stability and Eurocode 7 5.1. Size of the zone of ground governing the occurrence of the limit state 5.2. Correcting for confidence in the site investigation 5.3. Modelling spatial variability of soil parameters explicitly 5.4. Applying partial factors References 6. Global design using analytical solutions 6.1. Simple wished-in-place equilibrium 6.2. Empirical methods 6.3. Soil-structure interaction using the Curtis-Muir Wood solution 6.3.1. Notation used in the Curtis-Muir Wood solution 6.3.2. Boundary conditions and ground stresses 6.3.3. Elliptical deformation of a circular opening 6.3.4. Elliptical deformation of a thin inextensible lining 6.3.5. ‘Full slip’ – no shear between lining and ground 6.3.6. ‘No slip’ – full shear interaction between lining and ground 6.3.7. Direct compression of the lining due to uniform load 6.4. Global design of shafts 6.5. Bedded beam models 6.6. Summary 6.7. Problems References 7. Global design using numerical modelling 7.1. Boundary conditions at the tunnel perimeter 7.1.1. Wished-in-place tunnel lining 7.1.2. The convergence-confinement method 7.1.2.1. The β-factor method 7.1.2.2. The target volume loss method 7.1.3. Gap method 7.1.4. The grout pressure method 7.1.5. Surface contraction 7.1.6. Core softening 7.1.7. Summary 7.2. Boundary conditions at the edges of the model 7.3. Boundary distances 7.4. Element types for the lining and the ground 7.5. Mesh density and refinement 7.6. Modelling groundwater 7.6.1. Undrained behaviour 7.6.2. Long-term effects 7.7. Validation and error checking 7.7.1. Comparison with an analytical solution 7.7.2. Validation by comparison with a laboratory test or experiment 7.7.3. Validation by comparison with a case history 7.8. Constitutive models 7.9. Interpretation and presentation of results 7.10. 3D numerical analysis 7.10.1. Modelling an advancing tunnel in 3D 7.10.2. Modelling the tunnel lining 7.10.3. Modelling junctions 7.10.3.1. Kirsch solution 7.10.3.2. Wished-in-place 3D numerical model 7.10.3.3. 3D numerical model with sequential construction 7.11. Summary 7.12. Problems References 8. Lining materials 8.1. Reinforced concrete 8.2. Steel fibre-reinforced concrete 8.2.1. Codes of practice and sources of design guidance 8.2.2. Material behaviour 8.2.3. Design assisted by testing 8.2.4. Determination of characteristic strength values 8.2.5. Determination of the characteristic mean strength values 8.2.6. Durability 8.2.7. Watertightness 8.2.8. Fire resistance 8.3. Concrete reinforced with other fibres 8.4. Plain concrete 8.5. Cast iron 8.6. Summary References 9. Segmental lining design 9.1. Taking account of the effect of joints in 2D plane strain analyses 9.2. Rotational rigidity – flat joints 9.2.1. Linear elastic packers 9.2.2. Nonlinear packers 9.2.3. Comparison of different packer types 9.3. Estimating local forces due to joint rotation 9.3.1. Calculating joint rotation from a specified ovalisation 9.3.2. Using eccentricity of hoop force to check joint capacity in crushing and shear 9.4. Bursting stresses 9.5. Curved joints 9.6. Modelling joints in bedded beam analyses 9.7. Modelling joints in 2D or 3D numerical analysis 9.8. In service loads – ultimate limit state design 9.8.1. Application of partial factors to the lining forces 9.8.2. Constructing a moment-axial force interaction diagram 9.8.3. Design for shear 9.9. In service loads - serviceability limit state design 9.9.1. Estimating crack widths 9.9.2. Constructing a moment-axial force interaction diagram for the SLS 9.10. Summary 9.11. Problems References 10. Segment design for transient loads 10.1. Demoulding 10.2. Storage 10.2.1. Actions 10.2.2. SFRC segment ultimate limit state design for bending moment 10.2.3. SFRC segment ULS design for shear force 10.2.4. SFRC segment SLS design 10.3. Transportation and handling 10.4. Erection 10.5. Installation loads 10.5.1. Temporary TBM jacking loads 10.5.2. Longitudinal effects of TBM jacking loads 10.5.3. Grout pressures and tailseal brushes 10.5.4. Design for permanent effects of installation loads 10.6. Gasket compression and bolt loads 10.7. Summary 10.8. Problems References 11. Sprayed concrete lining design 11.1. Primary and secondary linings 11.1.1. Single-pass lining 11.1.2. Single-shell lining 11.1.3. Traditional approach 11.1.4. Double-shell lining system 11.1.5. Composite shell lining system 11.1.6. Initial layer 11.1.7. Regulating layer 11.1.8. Finishing layer 11.2. Designing the profile 11.2.1. Three arc profile 11.2.2. Two arc profiles 11.2.3. Other profile shapes 11.2.4. Optimising the profile 11.3. Dividing the face 11.3.1. Full-face excavation 11.3.2. Top heading–invert (TH-I) excavation 11.3.3. Top heading–bench–invert (TH-B-I) excavation 11.3.4. Single sidewall drift and enlargement 11.3.5. Twin sidewall drift and enlargement 11.3.6. Pilot tunnels 11.3.7. Binocular caverns 11.3.8. Trinocular caverns 11.4. Toolbox measures 11.4.1. Pocket excavation 11.4.2. Reduction of advance length or ring closure distance 11.4.3. Ground improvement 11.4.4. Support ahead of the face 11.4.5. Face dowels 11.4.6. Dewatering/depressurisation 11.5. Construction details and tolerances 11.5.1. Circumferential construction joints 11.5.2. Radial construction joints 11.5.3. Tolerances 11.6. 3D numerical modelling 11.6.1. Linear elastic sprayed concrete constitutive model 11.6.2. Ageing sprayed concrete properties 11.6.3. Linear elastic – perfectly plastic sprayed concrete constitutive model 11.6.4. More complex constitutive models 11.7. 2D numerical modelling 11.8. Summary 11.9. Problems References 12. Estimating ground movements 12.1. Transverse surface settlements 12.2. Estimating volume loss 12.2.1. Estimating short-term volume loss in stiff clays 12.2.2. Estimating volume loss in other soil types 12.3. Longitudinal and transient surface settlements 12.4. Long-term ground movements 12.4.1. Long-term ground movements due to excess pore pressures 12.4.2. Long-term ground movements due to the tunnel lining acting as a drain 12.5. Subsurface ground movements 12.5.1. Subsurface ground movements in undrained soils 12.5.2. Subsurface ground movements in drained soils 13.6. Horizontal ground movements 12.7. Strains in the ground 12.8. Ground movements due to shaft construction 12.9. Summary 12.10. Problems References 13. Estimating building damage 13.1. Stage 1 assessment 13.2. Stage 2 assessment 13.2.1. Generic Stage 2 assessment 13.3. Stage 2b assessment 13.3.1. Buildings with discrete pad foundations 13.3.2. Steel or reinforced concrete frame buildings 13.4. Stage 3 assessment 13.4.1. Tunnel excavation 13.4.2. Soil-structure interaction 13.4.3. Modelling the building 13.5. Summary 13.6. Problems References Appendix A: Derivation of wedge-prism method Finding the vertical pressure on surface CDEF Finding the sliding friction on surfaces ADE and BCF Finding the sliding friction on ABEF Calculating values for the F0 nomogram Calculating values for the F1 nomogram References Appendix B: Details from derivation of Curtis–Muir Wood equations Integration by parts Appendix C: Derivation of the deflection of a rectangular simply-supported beam under a point load Bending deflection Shear stress Unit load method to calculate shear deflection - part 1 Form factor for shear for a rectangular section Unit load method to calculate shear deflection - part 2 Comparison with Burland & Wroth (1974) equation The effect of varying E/G ratio References Index