دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Katerina Plakitsi (editor). Sylvie Barma (editor)
سری:
ISBN (شابک) : 3031443764, 9783031443763
ناشر: Springer
سال نشر: 2024
تعداد صفحات: 315
[306]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 9 Mb
در صورت تبدیل فایل کتاب Sociocultural Approaches to STEM Education: An ISCAR International Collective Issue (Sociocultural Explorations of Science Education, 21) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب رویکردهای اجتماعی فرهنگی به آموزش STEM: یک مسئله جمعی بین المللی ISCAR (کاوش های اجتماعی فرهنگی آموزش علوم، 21) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب کمکی به رویکردهای اجتماعی فرهنگی در آموزش مهندسی فناوری علوم و ریاضیات (STEM) است. این یک چارچوب نظری تفسیری جدیدی را ارائه می دهد که از روانشناسی تاریخی فرهنگی آمده است. نویسندگان برخی از عناصر جدی زمینه اجتماعی-فرهنگی را برجسته میکنند که یادگیری در STEM یا با افزودن STEM را واسطه میکند. این کتاب کار پژوهشگران علاقه مند به روانشناسی رشد و دوران کودکی را با تمرکز ویژه بر استفاده از نظریه فعالیت و رویکرد پژوهش فرهنگی-تاریخی برای متحد کردن این دو رویکرد متضاد در مطالعه کودکان گرد هم می آورد. نویسندگان در رابطه و تجربه ما با فناوری تجدید نظر می کنند. توجه را از جنبه ابزاری ناب فناوری به رویکرد عمیق انسانی و اجتماعی سوق می دهد. علاوه بر این، این کتاب بر موضوع آموزش مداوم معلمان در محیطهای رسمی و غیررسمی تمرکز دارد که تحت یک سیستم متوالی چرخههای گسترده و نقش کلیدی تضادها در محیطهای آموزشی تحولآفرین دیده میشود. به طور کلی، این کتاب جامعه آکادمیک را تشویق می کند تا گفتگو با جوامع دیگر را باز کند و تحقیقات بین رشته ای را در مواقع بحران تقویت کند.
This book is a contribution to the sociocultural approaches to Science Technology Engineering and Mathematics (STEM) Education. It offers a new interpreting theoretical framework coming from the Cultural Historical Psychology. The authors highlight some serious elements of the sociocultural context that mediates learning on STEM or with STEM adds. The book brings together the work of researchers interested in developmental psychology and childhood, with a special focus on using Activity theory and Cultural-historical research approach to unite these two opposing approaches to the study of children. The authors reconsider our relationship and experiencing with technology. It moves the attention from the pure instrumental aspect of technology to a deep human and societal approach. Moreover, the book focuses on the issue of teachers\' continuing education in both formal and informal settings is being seen under a sequential system of expansive cycles and the key role of contradictions in transformative educational settings. Overall, this book encourages the academic society to open dialogue with other societies and enhance interdisciplinary research in times of crisis.
Preface Introduction: Toward a Zone of Proximal Development in Stem Education From What to Why From Encapsulation to Partnerships Zone of Proximal Development of Stem Education From What to Why in Chapters of This Book From Encapsulation to Partnerships in Chapters of This Book Bringing Together the Two Dimensions References Contents About the Editors Part I: A Chat Perspective on Transformative Activity in Science Education Chapter 1: STEM and Its Roots and Branches: Critical Reflections from Cultural-Historical Activity Theory 1.1 The Meaning of STEM Education 1.2 Outlining the Analysis from Cultural-Historical Activity Theory 1.2.1 The Method and Rationale of CHAT 1.3 Object-Oriented Activity 1.4 Historicity and Development: Past, Future, Innovation, and Technology in STEM Education 1.5 Conclusions References Chapter 2: STEAM Education to Unleash Students´ Creativity and Knowledge-Building Capacity: An Indian Perspective 2.1 STEAM to Enrich STEM 2.2 STEAM in the Indian Context 2.2.1 Structural Inequality in the Indian Education System: Dual System of Education 2.2.2 Conflict Between Education and Culture 2.3 Questions for the Study 2.4 Theoretical Orientation 2.5 Method 2.5.1 Data Sources 2.5.2 Data Analysis 2.6 Findings 2.6.1 Juxtaposing the Elements of Two Activity Contexts, AC1 and AC2 2.6.2 Problem-Solving Activity: Nature of Classroom Interaction in AC1 2.6.3 Problem-Solving Activity: Nature of Classroom Interaction in AC2 2.6.4 The Nature of Classroom Interaction in AC1 and AC2 Compared 2.6.5 Weaving STEAM into School Curriculum: Putting Learning into the Hands of the Students 2.7 Significance of Art in STEM Education 2.8 The Problem of Change 2.9 Conclusion References Chapter 3: Developing Science Education Through Developmental Teaching: Theoretical Thinking, Personality Development, and Rad... 3.1 Introduction 3.2 Historical Origins of Developmental Education 3.2.1 A Comment on System 3.2.2 A Comment on Present Status 3.3 Theoretical Thinking as an Ideal for School Science Teaching 3.3.1 What Is Thinking? 3.3.2 Substantive Generalizations and Theoretical Thinking 3.4 Personality Development and Science Education 3.4.1 Meaning of Personality Development in Relation to Science Education 3.4.2 Role of Theoretical Thinking in Personality Development 3.4.3 Should Schools Be Engaged in Personality Development? 3.4.4 Need for Further Discussion 3.5 Radical-Local Teaching and Learning 3.6 Electromagnetism in Lower-Secondary School 3.6.1 Personality Development 3.6.2 Theoretical Thinking and Radical-Local Teaching and Learning 3.7 Concluding Comments 3.7.1 Is It Important to Work with Germ Cells or Core Relations? 3.7.2 Is it Possible to Find Germ Cells or Core Relations in All Content Areas? References Part II: Early Years Science Education from a Cultural Historical Perspective Chapter 4: A Cultural-Historical Study of Teacher Development: How Early Childhood Teachers Meet the Demands of a Theoretical ... 4.1 Introduction 4.2 A Cultural-Historical Conceptualisation of Teacher Development 4.3 Study Design: An Educational Experiment 4.3.1 Participants 4.3.2 Data Collection 4.3.3 Analysis 4.4 Study Findings 4.4.1 Working on a Theoretical Problem Created New Psychological Conditions for Teachers 4.4.2 The Educational Experiment Brought Changes in the Dominating Motives of the Teachers 4.5 Discussion 4.6 Conclusion References Chapter 5: How Does Science Learning Happen During Scientific Play? A Case Example of the Dissolution Phenomenon 5.1 Résumé 5.2 Conceptualizing Scientific Play in Early Childhood Education 5.3 Forming the Science Concept of Dissolution in the Early Years 5.4 Methodological Framework 5.4.1 Study Design 5.5 First Play-Based Activity: Mixing of Solid and Liquid Substances 5.6 Second Play-Based Activity: The Dissolution of Solid Substances in Liquid 5.7 Third Play-Based Activity: The Dissolution of Liquid Substances in Liquid 5.8 Forth Play-Based Activity: The Dissolution of Liquid Substances in Liquid 5.8.1 Participants and Data Collection 5.9 Findings 5.9.1 First Play-Based Activity: Castles Made of Mud 5.9.2 Second Play-Based Activity: Snow Made of Powdered Sugar and Glitter 5.9.3 Third Play-Based Activity: Oil and Vinegar Have a Battle 5.9.4 Fourth Play-Based Activity: Would It Be Dissolved? We Should Do It First! 5.10 Discussion and Conclusions References Chapter 6: `On the Way to Science´ Development of the Scientific Method in the Early Years 6.1 Science Education in the Early Years: Concepts and Processes 6.2 Cultural Historical Activity Theory (CHAT) as a Framework for Science Education 6.3 On the Way to the Scientific Method with the Aid of Cartoons 6.4 Data Analysis and Results 6.5 Discussion and Conclusions References Part III: Instrument Producing Activity and the Role of Techno-Creative Activities in STEM Education Chapter 7: We Have Problems! Analysis of Collaborative Problem Solving in an International Educational Robotics Challenge 7.1 Collaborative Problem Solving in Educational Robotics 7.2 Situational Pedagogy for Problem Solving 7.3 Analysis of the R2T2 Educational Robotics Challenge 7.4 Analysis of the Progress of the R2T2 Challenge 7.5 The R2T2 Challenge, as a Collective Activity with a High Degree of Engagement 7.6 Problem Solving During the Challenge 7.7 Problem Analysis During Challenge R2T2 7.8 Remediation to Succeed the Challenge 7.9 Discussion References Chapter 8: Creativity in Early Years Science Education Through the Exploitation of Robotics in the Sustainable School 8.1 Introduction 8.2 Theoretical and Methodological Framework 8.3 The Conceptual Framework 8.4 The Development Phase 8.5 The Implementation Phase 8.6 Discussion and Conclusions References Chapter 9: Science Education Program ``Thunderbolt Hunt:´´ Practicing Scientific Method in the Archaeological Museum of Ioanni... 9.1 The Design Framework SciEPIMGI 9.1.1 Conception of the Idea/the Development Phase 9.1.2 The Design Phase 9.1.3 The Implementation Phase 9.1.4 The Evaluation Phase 9.2 The Educational Program ``Thunderbolt Hunt´´ in the Archaeological Museum of Ioannina 9.2.1 The Concept of Air and Its Properties in the Educational Program ``Thunderbolt Hunt´´ 9.2.1.1 First Experiment 9.2.1.2 Second Experiment 9.2.1.3 Third Experiment 9.3 Methodology 9.3.1 Participants 9.3.2 Data Analysis 9.3.3 CHAT Frame in Relation to the Analysis 9.4 Results 9.4.1 Some Aggregate Results 9.4.2 The Most Frequently Used Words by the Students 9.4.3 The Instructor´s Role 9.4.4 Examples of Scientific Method Processes in Students´ Drawings 9.4.5 The Scientific Method Processes Through the Data 9.4.5.1 Communication 9.4.5.2 Observation 9.4.5.3 Predictions and Hypotheses 9.4.5.4 Experimenting 9.4.5.5 Interpreting 9.4.5.6 Operational Definitions 9.4.5.7 Measuring 9.5 Discussion 9.6 Conclusion References Part IV: Science Teachers Education Informed by Cultural Historical Activity Research Chapter 10: Graph Analysis of an Expanded Co-teaching Activity in the Context of Physics Teacher Education 10.1 Introduction 10.2 Historical Conditioning: Teachers´ Education in Brazil 10.3 Theoretical-Methodological Framework 10.3.1 Cultural-Historical Activity Theory 10.3.2 Co-teaching 10.3.3 Graphs and Social Networks 10.3.4 Data Gathering and Processing 10.4 Empirical Framework 10.5 The Co-teaching Class 10.5.1 Class Description 10.6 Co-teaching Graph Analysis 10.6.1 The Co-teaching Dance Subnet 10.7 Final Considerations References Chapter 11: Expansive Resolution of Conflicts of Motives and Boundary Crossing Activity by Science Teachers 11.1 About the Chapter 11.2 Science Education and Technological Education for the Development of Technoscientific Literacy 11.3 Challenging the Traditional Form of Science Education by Means of the Design of Technical Objects 11.3.1 Merging Science and Technology Education: A Complex Relationship with Technical Objects 11.4 Theoretical Framework 11.4.1 Expansive Resolution of Conflicts of Motives to Trigger Teacher´s Agency 11.4.1.1 Expansive Learning 11.5 Method and Data Analysis 11.5.1 Data Analysis 11.6 Identification of Conflicts of Motives Through Discursive Manifestations of Contradictions 11.7 Use of Contradictions in Activity Systems to Understand the Development of the Activity 11.8 Expansion of the Activity: Boundary Zone Activity and Boundary Crossing 11.9 Findings 11.9.1 Some Elements of Context 11.9.2 Resolving Conflicts of Motives and Engaging in the Design of Technical Objects, Classroom, and Instructional Artefacts 11.9.3 The Contradictory Struggles for Co-designing the Technical and Instructional Artefacts 11.9.4 Boundary Crossing Activity 11.10 What Was Learned? References Chapter 12: Micro-Tensions from Students´ Prototyping in a School Makerspace: Lessons from an Unfinished Work 12.1 Introduction 12.2 Theoretical Background 12.2.1 Learning in Making 12.2.2 Design Thinking Stages Within Making Activities 12.2.3 Using Activity Theory to Analyze the Making Experience 12.3 Method 12.3.1 Case Description: Design Thinking Class 12.3.2 Participants 12.3.3 Data Collection 12.3.4 Analysis: Focus on Bobby and Zack 12.4 Results 12.5 Discussion and Conclusions References Index