مشخصات کتاب
Sobolev Maps to the Circle: From the Perspective of Analysis, Geometry, and Topology
ویرایش:
نویسندگان: Haim Brezis. Petru Mironescu
سری: Progress in Nonlinear Differential Equations and Their Applications, 96
ISBN (شابک) : 1071615106, 9781071615102
ناشر: Birkhäuser
سال نشر: 2021
تعداد صفحات: 561
[552]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 7 Mb
قیمت کتاب (تومان) : 43,000
میانگین امتیاز به این کتاب :
تعداد امتیاز دهندگان : 9
در صورت تبدیل فایل کتاب Sobolev Maps to the Circle: From the Perspective of Analysis, Geometry, and Topology به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب نقشه های سوبولف به دایره: از منظر تحلیل، هندسه و توپولوژی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
توضیحاتی در مورد کتاب نقشه های سوبولف به دایره: از منظر تحلیل، هندسه و توپولوژی
تئوری توابع سوبولف با ارزش واقعی بخشی کلاسیک از تجزیه و تحلیل
است و کاربردهای گسترده ای در ریاضیات محض و کاربردی دارد. در
مقابل، مطالعه نقشههای Sobolev با ارزش چندگانه نسبتاً جدید
است. انگیزه کاوش در این فضاها در چهل سال گذشته از هندسه و
فیزیک به وجود آمد. این تک نگاری اولین تک نگاری است که یک
درمان جامع و یکپارچه از نقشه های سوبولف به دایره ارائه می دهد
و نتایج متعددی را ارائه می دهد که توسط نویسندگان و دیگران به
دست آمده است. بسیاری از ارتباطات شگفتانگیز با سایر حوزههای
ریاضیات، از جمله نظریه Monge-Kantorovich در انتقال بهینه،
موارد در نظریه اندازهگیری هندسی، سری فوریه، و عملکردهای
غیرمحلی که به عنوان فیلترهای حذف نویز در پردازش تصویر رخ
میدهند، مورد بررسی قرار گرفتهاند. انحرافات متعدد نمایی از
تئوری نقشه های سوبولف با ارزش کره ای را ارائه می دهد.
هر فصل بر روی یک موضوع متمرکز است و با یک مرور کلی با جزئیات
شروع می شود و پس از آن مهم ترین نتایج و اثبات های نسبتاً کامل
ارائه می شود. بخشهای «مکملها و مسائل باز» مقدمههای کوتاهی
برای پیشرفتهای مختلف بعدی یا موضوعات مرتبط ارائه میکنند و
جهتهای
جدید تحقیق را پیشنهاد میکنند. دیدگاههای تاریخی و فهرستی
جامع از منابع، هر فصل را به پایان میرسانند. موضوعات تحت پوشش
عبارتند از بلند کردن، تکینگی های نقطه و خط، حداقل اتصالات و
سطوح حداقل، فضاهای منحصر به فرد، فاکتورسازی، چگالی، مسائل
دیریکله، نظریه ردیابی، و پدیده های شکاف.
نقشه های Sobolev به دایره برای ریاضیدانانی که در زمینه
های مختلف کار می کنند، جذاب خواهد بود، مانند تجزیه و تحلیل
غیرخطی، PDE، تجزیه و تحلیل هندسی، سطوح حداقل، حمل و نقل
بهینه، و توپولوژی. همچنین برای فیزیکدانانی که بر روی کریستال
های مایع و نظریه ابررساناها گینزبورگ-لاندو کار می کنند، جالب
خواهد بود.
توضیحاتی درمورد کتاب به خارجی
The theory of real-valued Sobolev functions is a classical
part of analysis and has a wide range of applications in pure
and applied mathematics. By contrast, the study of
manifold-valued Sobolev maps is relatively new. The incentive
to explore these spaces arose in the last forty years from
geometry and physics. This monograph is the first to
provide a unified, comprehensive treatment of Sobolev maps to
the circle, presenting numerous results obtained by the
authors and others. Many surprising connections to other
areas of mathematics are explored, including the
Monge-Kantorovich theory in optimal transport, items in
geometric measure theory, Fourier series, and non-local
functionals occurring, for example, as denoising filters in
image processing. Numerous digressions provide a glimpse of
the theory of sphere-valued Sobolev maps.
Each chapter focuses on a single topic and starts with a
detailed overview, followed by the most significant results,
and rather complete proofs. The “Complements and Open
Problems” sections provide short introductions to various
subsequent developments or related topics, and suggest new
directions of research. Historical perspectives and a
comprehensive list of references close out each
chapter. Topics covered include lifting, point and line
singularities, minimal connections and minimal surfaces,
uniqueness spaces, factorization, density, Dirichlet
problems, trace theory, and gap phenomena.
Sobolev Maps to the Circle will appeal to
mathematicians working in various areas, such as nonlinear
analysis, PDEs, geometric analysis, minimal surfaces, optimal
transport, and topology. It will also be of interest to
physicists working on liquid crystals and the Ginzburg-Landau
theory of superconductors.
نظرات کاربران