دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Makarov, Boris M., Podkorytov, Anatolii N. سری: ISBN (شابک) : 9783030794385, 9783030794378 ناشر: سال نشر: 2021 تعداد صفحات: [296] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 4 Mb
در صورت تبدیل فایل کتاب Smooth Functions and Maps به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب توابع و نقشه های صاف نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
شامل یک نظریه سازگار از توابع صاف است با مقادیر بحرانی نگاشت های صاف سروکار دارد از یک رویکرد فنی جدید استفاده می کند که اجازه می دهد تا برخی از شواهد فنی دشوار را با حفظ یکپارچگی کامل روشن کند.
Contains a consistent theory of smooth functions Deals with critical values of smooth mappings Uses a new technical approach that allows to clarify some of the technically difficult proofs while maintaining full integrity
Preface to the English Translation Preface Contents Basic notation Sets Maps and Functions Smooth Functions Sets of Functions Measures Introduction. Preliminaries 0.1 The Space Rm 0.2 Open and Closed Sets 0.3 The Limit of a Sequence in Rm 0.4 Lindelöf’s Lemma 0.5 Compact Sets 0.6 The Limit of a Map 0.7 Continuity 0.8 Continuity on a Compact Set 0.9 Uniform Continuity 0.10 The Continuity of the Inverse Map 0.11 Connectedness 0.12 Convex Sets in Rm 0.13 Linear Maps Between Euclidean Spaces Exercises Chapter I. Differentiable Functions 1 Partial Derivatives and Increments 1.1 Partial Derivatives 1.2 Lagrange’s Mean Value Theorem 1.3 The Criterion of Constancy 1.4 The Lipschitz Condition Exercises 2 The Definition of a Differentiable Function 2.1 Differentiability 2.2 Differentiability: a Necessary Condition 2.3 Differentiability: a Sufficient Condition 2.4 Gradient Exercises 3 Directional Derivatives 3.1 The Derivative Along a Vector 3.2 Computing Directional Derivatives 3.3 A Coordinate-Free Description of the Gradient Exercises 4 The Tangent Plane to a Level Surface 4.1 Level Sets 4.2 The Graph as a Level Set 4.3 Tangent Plane Exercises 5 Differentiable Maps 5.1 Definition of Differentiability 5.2 The Jacobian Matrix 5.3 Differentiation of Composite Functions 5.4 Lagrange’s Inequality 5.5 Differentiability of the Inverse Map Exercises 6 Higher Derivatives 6.1 Definitions and Notation 6.2 The Symmetry of Second Derivatives 6.3 Smooth Functions and Maps 6.4 Equality of Mixed Partial Derivatives of Arbitrary Order 6.5 Algebraic Operations on Smooth Functions 6.6 Composition of Smooth Maps 6.7 Fractional Smoothness Exercises 7 Polynomials in Several Variables and Higher Differentials 7.1 Polynomials in Several Variables 7.2 Higher Differentials Exercises 8 Taylor’s Formula 8.1 Preliminaries 8.2 Taylor’s Formula for Functions of Several Variables 8.3 Another Estimate for the Remainder 8.4 A Characteristic Property of Taylor Polynomials Exercises 9 Extrema of Functions of Several Variables 9.1 A Necessary Condition for an Extremum 9.2 A Refined Necessary Condition for an Extremum 9.3 Sufficient Conditions for an Extremum 9.4 The Absolute Maximum and Minimum Values of a Function of Several Variables Exercises 10 Implicit Function 10.1 Statement of the Problem 10.2 The Existence and Uniqueness of an Implicit Function 10.3 The Smoothness of an Implicit Function 10.4 The Role of the Gradient of F Exercises 11 *Whitney’s Extension Theorem 11.1 Statement of the Problem and a Preliminary Result 11.2 Whitney’s Extension Theorem 11.3 Proof of Whitney’s Theorem 11.4 Preserving the Degree of Smoothness of the Highest Derivatives 11.5 Extension from Totally Connected Sets 11.6 Sets with Minimally Smooth Boundaries Exercises Chapter II. Smooth Maps 1 The Open Mapping Theorem and the Diffeomorphism Theorem 1.1 The Open Mapping Theorem 1.2 The Open Mapping Theorem (Continued) 1.3 The Diffeomorphism Theorem 1.4 The Smoothness of the Inverse Map Exercises 2 Local Invertibility Theorems and Dependence of Functions 2.1 Local Invertibility 2.2 The Partial Inversion Theorem 2.3 Extending a Smooth Map to a Diffeomorphism 2.4 Dependence and Independence of Functions Exercise 3 Curvilinear Coordinates and Change of Variables 3.1 Curvilinear Coordinates 3.2 Examples of Curvilinear Coordinates 3.3 Partial Derivatives in Curvilinear Coordinates Exercises 4 Classification of Smooth Maps 4.1 Equivalence of Smooth Maps 4.2 The Rank Theorem 5 *The Global Invertibility Theorem 5.1 Preliminary Remarks 5.2 Coverings and Their Properties 5.3 The Main Result Exercise 6 *The Morse Lemma 6.1 Uniform Reduction of Close Quadratic Forms to Canonical Form 6.2 Leibniz’s Rule for Differentiation Under the Integral Sign 6.3 Hadamard’s Lemma 6.4 The Main Result Chapter III. The Implicit Map Theorem and Its Applications 1 Implicit Maps 1.1 Statement of the Problem 1.2 The Inverse Mapping Theorem 1.3 Concluding Remarks Exercise 2 Smooth Manifolds 2.1 Definitions and Notation 2.2 Equivalent Descriptions of a Smooth Manifold 2.3 The Tangent Subspace 2.4 Examples Exercises 3 Constrained Extrema 3.1 Heuristic Arguments and Statement of the Problem 3.2 A Necessary Condition for a Constrained Extremum 3.3 The Lagrange Function and Lagrange Multipliers Method 3.4 Examples of Applying the Lagrange Multipliers Method 3.5 Sufficient Conditions for a Constrained Extremum 3.6 Conditions for the Absence of a Constrained Extremum Exercises Chapter IV. Critical Values of Smooth Maps 1 *Statement of the Problem and the Main Result 1.1 Critical Points and Critical Values 1.2 The Main Theorem 1.3 Critical Values of c1 -Maps 2 *Well-Positioned Manifolds 2.1 The Main Definition 2.2 Two Lemmas About Increments 3 *Morse’s Theorem on t-Representations 3.1 Preliminaries 3.2 t-Representation 3.3 The Existence of a t-Representation 4 *The Main Results 4.1 Proof of the Main Theorem 4.2 Generalization to Lipschitz Maps 5 *The Sharpness of the Conditions in the Main Theorem 5.1 Preliminaries 5.2 Cantor-Like Sets 5.3 Constructing an Auxiliary Function 5.4 The Auxiliary Function (Continued) 5.5 Counterexamples: Functions of Several Variables 5.6 Counterexamples: Maps in the Case n > m 5.7 Counterexamples: Maps in the Case m > n 6 *Whitney’s Example 6.1 Statement of the Problem and the Main Result 6.2 The Sets ca2 6.3 Constructing the Arc 6.4 Constructing the Function 6.5 Proving Inequality (4) 6.6 Generalization to the Case of Several Variables Chapter V. Addenda 1 *Smooth Partitions of Unity 1.1 Auxiliary Inequalities 1.2 The Partition of Unity Theorem 2 *Covering Theorems 2.1 A Preliminary Theorem 2.2 The Vitali Covering Theorem 2.3 Density Points 3 *Hausdorff Measures and Hausdorff Dimension 3.1 Outer Measures 3.2 The Construction of the Hausdorff Measures 3.3 The Basic Properties of the Hausdorff Measures 3.4 Relationship With the Lebesgue Measure 3.5 The Hausdorff Dimension 3.6 The Hausdorff Measure and Hausdorff Dimension of Cantor-Like Sets 3.7 The Cantor Function Corresponding to the Set Ca 4 *Comparing the Measures up x uq and up+q 4.1 The Upper Bound 4.2 Estimating up x uq From Above 4.3 Estimating up x uq From Below 4.4 Standard Sets 4.5 The Hausdorff Dimension of a Cartesian Product 5 *Estimates for Smooth Maps Related to the Hausdorff and Lebesgue Measures 5.1 Estimating the Hausdorff Measure of an Image 5.2 On Images of Zero Measure 5.3 A Refined Estimate of the Increment References Index