دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1 ed.] نویسندگان: N. Rengarajan (editor), C. Venkatesh (editor), P. Ponmurugan (editor), S. Balamurugan (editor) سری: ISBN (شابک) : 1119762006, 9781119762003 ناشر: Wiley-Scrivener سال نشر: 2022 تعداد صفحات: 400 [399] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 44 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Smart Systems for Industrial Applications (Artificial Intelligence and Soft Computing for Industrial Transformation) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب سیستم های هوشمند برای کاربردهای صنعتی (هوش مصنوعی و محاسبات نرم برای تحول صنعتی) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
هدف اصلی این کتاب ارائه بینشی در مورد نقش و پیشرفتهای هوش مصنوعی در سیستمهای الکتریکی و چالشهای آینده است.
این کتاب طیف وسیعی از موضوعات را در مورد هوش مصنوعی از دیدگاه چند رشته ای پوشش می دهد، از تاریخچه آن شروع می شود و تا نظریه های مربوط به هوش مصنوعی در مقابل انسان، مفاهیم و مقررات مربوط به هوش مصنوعی، انسان- توزیع ماشینی قدرت و کنترل، تفویض اختیار تصمیمات، تأثیر اجتماعی و اقتصادی هوش مصنوعی و غیره. نقش برجسته ای که هوش مصنوعی با ایجاد ارتباط بین افراد از طریق فناوری ها در جامعه ایفا می کند در این کتاب برجسته شده است. همچنین جنبههای کلیدی کاربردهای هوش مصنوعی مختلف در سیستمهای الکتریکی را پوشش میدهد تا امکان رشد در مهندسی برق را فراهم کند. تأثیر هوش مصنوعی بر عوامل اجتماعی و اقتصادی نیز از دیدگاه های مختلف مورد بررسی قرار می گیرد. علاوه بر این، بسیاری از جنبههای جذاب تکنیکهای هوش مصنوعی در حوزههای مختلف مانند آموزش الکترونیک، مراقبتهای بهداشتی، شبکه هوشمند، کمک مجازی و غیره پوشش داده میشوند.
مخاطب
این کتاب مورد توجه محققان و دانشجویان تحصیلات تکمیلی هوش مصنوعی، مهندسی برق و الکترونیک و همچنین مهندسین شاغل در زمینههای کاربردی مانند مراقبتهای بهداشتی، سیستمهای انرژی، آموزش و سایر موارد خواهد بود.
The prime objective of this book is to provide an insight into the role and advancements of artificial intelligence in electrical systems and future challenges.
The book covers a broad range of topics about AI from a multidisciplinary point of view, starting with its history and continuing on to theories about artificial vs. human intelligence, concepts, and regulations concerning AI, human-machine distribution of power and control, delegation of decisions, the social and economic impact of AI, etc. The prominent role that AI plays in society by connecting people through technologies is highlighted in this book. It also covers key aspects of various AI applications in electrical systems in order to enable growth in electrical engineering. The impact that AI has on social and economic factors is also examined from various perspectives. Moreover, many intriguing aspects of AI techniques in different domains are covered such as e-learning, healthcare, smart grid, virtual assistance, etc.
Audience
The book will be of interest to researchers and postgraduate students in artificial intelligence, electrical and electronic engineering, as well as those engineers working in the application areas such as healthcare, energy systems, education, and others.
Cover Half-Title Page Series Page Title Page Copyright Page Contents Preface 1 AI-Driven Information and Communication Technologies, Services, and Applications for Next-Generation Healthcare System 1.1 Introduction: Overview of Communication Technology and Services for Healthcare 1.2 AI-Driven Communication Technology in Healthcare 1.2.1 Technologies Empowering in Healthcare 1.2.2 AI in Diagnosis 1.2.3 Conversion Protocols 1.2.4 AI in Treatment Assistant 1.2.5 AI in the Monitoring Process 1.2.6 Challenges of AI in Healthcare 1.3 AI-Driven mHealth Communication System and Services 1.3.1 Embedding of Handheld Imaging Platforms With mHealth Devices 1.3.2 The Adaptability of POCUS in Telemedicine 1.4 AI-Driven Body Area Network Communication Technologies and Applications 1.4.1 Features 1.4.2 Communication Architecture of Wireless Body Area Networks 1.4.3 Role of AI in WBAN Architecture 1.4.4 Medical Applications 1.4.5 Nonmedical Applications 1.4.6 Challenges 1.5 AI-Driven IoT Device Communication Technologies and Healthcare Applications 1.5.1 AI’s and IoT’s Role in Healthcare 1.5.2 Creating Efficient Communication Framework for Remote Healthcare Management 1.5.3 Developing Autonomous Capability is Key for Remote Healthcare Management 1.5.4 Enabling Data Privacy and Security in the Field of Remote Healthcare Management 1.6 AI-Driven Augmented and Virtual Reality–Based Communication Technologies and Healthcare Applications 1.6.1 Clinical Applications of Communication-Based AI and Augmented Reality 1.6.2 Surgical Applications of Communication-Based on Artificial Intelligence and Augmented Reality References 2 Pneumatic Position Servo System Using Multi-Variable Multi-Objective Genetic Algorithm–Based Fractional-Order PID Controller 2.1 Introduction 2.2 Pneumatic Servo System 2.3 Existing System Analysis 2.4 Proposed Controller and Its Modeling 2.4.1 Modeling of Fractional-Order PID Controller 2.4.1.1 Fractional-Order Calculus 2.4.1.2 Fractional-Order PID Controller 2.5 Genetic Algorithm 2.5.1 GA Optimization Methodology 2.5.1.1 Initialization 2.5.1.2 Fitness Function 2.5.1.3 Evaluation and Selection 2.5.1.4 Crossover 2.5.1.5 Mutation 2.5.2 GA Parameter Tuning 2.6 Simulation Results and Discussion 2.6.1 MATLAB Genetic Algorithm Tool Box 2.6.2 Simulation Results 2.6.2.1 Reference = 500 (Error) 2.6.2.2 Reference = 500 2.6.2.3 Reference = 1,500 2.6.2.4 Analysis Report 2.7 Hardware Results 2.7.1 Reference = 500 2.7.2 Reference = 1,500 2.8 Conclusion References 3 Improved Weighted Distance Hop Hyperbolic Prediction–Based Reliable Data Dissemination (IWDH-HP-RDD) Mechanism for Smart Vehic 3.1 Introduction 3.2 Related Work 3.2.1 Extract of the Literature 3.3 Proposed Improved Weighted Distance Hop Hyperbolic Prediction–Based Reliable Data Dissemination (IWDH-HP-RDD) Mechanism for 3.4 Simulation Results and Analysis of the Proposed IWDH-HP-RDD Scheme 3.5 Conclusion References 4 Remaining Useful Life Prediction of Small and Large Signal Analog Circuits Using Filtering Algorithms 4.1 Introduction 4.2 Literature Survey 4.3 System Architecture 4.4 Remaining Useful Life Prediction 4.4.1 Initialization 4.4.2 Proposal Distribution 4.4.3 Time Update 4.4.4 Relative Entropy in Particle Resampling 4.4.5 RUL Prediction 4.5 Results and Discussion 4.6 Conclusion References 5 AI in Healthcare 5.1 Introduction 5.1.1 What is Artificial Intelligence? Machine Learning – Neural Networks and Deep Learning Natural Language Processing 5.2 Need of AI in Electronic Health Record 5.2.1 How Does AI/ML Fit Into EHR? 5.2.2 Natural Language Processing (NLP) 5.2.3 Data Analytics and Representation 5.2.4 Predictive Investigation 5.2.5 Administrative and Security Consistency 5.3 The Trending Role of AI in Pharmaceutical Development 5.3.1 Drug Discovery and Design 5.3.2 Diagnosis of Biomedical and Clinical Data 5.3.3 Rare and Epidemic Prediction 5.3.4 Applications of AI in Pharma 5.3.5 AI in Marketing 5.3.6 Review of the Companies That Use AI 5.4 AI in Surgery 5.4.1 3D Printing 5.4.2 Stem Cells 5.4.3 Patient Care 5.4.4 Training and Future Surgical Team 5.5 Artificial Intelligence in Medical Imaging 5.5.1 In Cardio Vascular Abnormalities 5.5.2 In Fractures and Musculoskeletal Injuries 5.5.3 In Neurological Diseases and Thoracic Complications 5.5.4 In Detecting Cancers 5.6 AI in Patient Monitoring and Wearable Health Devices Monitoring Health Through Wearable’s and Personal Devices 5.6.2 Making Smartphone Selfies Into Powerful Diagnostic Tools 5.7 Revolutionizing of AI in Medicinal DecisionMaking at the Bedside 5.8 Future of AI in Healthcare 5.9 Conclusion References 6 Introduction of Artificial Intelligence 6.1 Introduction 6.1.1 Intelligence 6.1.2 Types of Intelligence 6.1.3 A Brief History of Artificial Intelligence From 1923 till 2000 6.2 Introduction to the Philosophy Behind Artificial Intelligence 6.2.1 Programming With and Without AI 6.3 Basic Functions of Artificial Intelligence 6.3.1 Categories of Artificial Intelligence 6.3.1.1 Reactive Machines 6.3.1.2 Limited Memory 6.3.1.3 Theory of Mind 6.3.1.4 Self-Awareness 6.4 Existing Technology and Its Review 6.4.1 Tesla’s Autopilot 6.4.2 Boxever 6.4.3 Fin Gesture 6.4.4 AI Robot 6.4.5 Vinci 6.4.6 AI Glasses 6.4.7 Affectiva 6.4.8 AlphaGo Beats 6.4.9 Cogito 6.4.10 Siri and Alexa 6.4.11 Pandora’s 6.5 Objectives 6.5.1 Major Goals 6.5.2 Need for Artificial Intelligence 6.5.3 Distinction Between Artificial Intelligence and Business Intelligence 6.6 Significance of the Study 6.6.1 Segments of Master Frameworks 6.6.1.1 User Interface 6.6.1.2 Expert Systems 6.6.1.3 Inference Engine 6.6.1.4 Voice Recognition 6.6.1.5 Robots 6.7 Discussion 6.7.1 Artificial Intelligence and Design Practice 6.8 Applications of AI 6.8.1 AI Has Been Developing a Huge Number of Tools Necessary to Find a Solution to the Most Challenging Problems in Computer Sc 6.8.2 Future of AI 6.9 Conclusion References 7 Artificial Intelligence in Healthcare: Algorithms and Decision Support Systems 7.1 Introduction 7.2 Machine Learning Work Flow and Applications in Healthcare 7.2.1 Formatting and Cleaning Data 7.2.2 Supervised and Unsupervised Learning 7.2.3 Linear Discriminant Analysis 7.2.4 K-Nearest Neighbor 7.2.5 K-Means Clustering 7.2.6 Random Forest 7.2.7 Decision Tree 7.2.8 Support Vector Machine 7.2.9 Artificial Neural Network 7.2.10 Natural Language Processing 7.2.11 Deep Learning 7.2.12 Ensembles 7.3 Commercial Decision Support Systems Based on AI 7.3.1 Personal Genome Diagnostics 7.3.2 Tempus 7.3.3 iCarbonX—Manage Your Digital Life 7.3.4 H2O.ai 7.3.5 Google DeepMind 7.3.6 Buoy Health 7.3.7 PathAI 7.3.8 Beth Israel Deaconess Medical Center 7.3.9 Bioxcel Therapeutics 7.3.10 BERG 7.3.11 Enlitic 7.3.12 Deep Genomics 7.3.13 Freenome 7.3.14 CloudMedX 7.3.15 Proscia 7.4 Conclusion References 8 Smart Homes and Smart Cities 8.1 Smart Homes 8.1.1 Introduction 8.1.2 Evolution of Smart Home 8.1.3 Smart Home Architecture 8.1.3.1 Smart Electrical Devices or Smart Plugs 8.1.3.2 Home Intelligent Terminals or Home Area Networks 8.1.3.3 Master Network 8.1.4 Smart Home Technologies 8.1.5 Smart Grid Technology 8.1.6 Smart Home Applications 8.1.6.1 Smart Home in the Healthcare of Elderly People 8.1.6.2 Smart Home in Education 8.1.6.3 Smart Lighting 8.1.6.4 Smart Surveillance 8.1.7 Advantages and Disadvantages of Smart Homes 8.2 Smart Cities 8.2.1 Introduction 8.2.2 Smart City Framework 8.2.3 Architecture of Smart Cities 8.2.4 Components of Smart Cities 8.2.4.1 Smart Technology 8.2.4.2 Smart Infrastructure 8.2.4.3 Smart Mobility 8.2.4.4 Smart Buildings 8.2.4.5 Smart Energy 8.2.4.6 Smart Governance 8.2.4.7 Smart Healthcare 8.2.5 Characteristics of Smart Cities 8.2.6 Challenges in Smart Cities 8.2.7 Conclusion References 9 Application of AI in Healthcare 9.1 Introduction 9.1.1 Supervised Learning Process 9.1.2 Unsupervised Learning Process 9.1.3 Semi-Supervised Learning Process 9.1.4 Reinforcement Learning Process 9.1.5 Healthcare System Using ML 9.1.6 Primary Examples of ML’s Implementation in the Healthcare 9.1.6.1 AI-Assisted Radiology and Pathology 9.1.6.2 Physical Robots for Surgery Assistance 9.1.6.3 With the Assistance of AI/ML Techniques, Drug Discovery 9.1.6.4 Precision Medicine and Preventive Healthcare in the Future 9.2 Related Works 9.2.1 In Healthcare, Data Driven AI Models 9.2.2 Support Vector Machine 9.2.3 Artificial Neural Networks 9.2.4 Logistic Regression 9.2.5 Random Forest 9.2.6 Discriminant Analysis 9.2.7 Naïve Bayes 9.2.8 Natural Language Processing 9.2.9 TF-IDF 9.2.10 Word Vectors 9.2.11 Deep Learning 9.2.12 Convolutional Neural Network 9.3 DL Frameworks for Identifying Disease 9.3.1 TensorFlow 9.3.2 High Level APIs 9.3.3 Estimators 9.3.4 Accelerators 9.3.5 Low Level APIs 9.4 Proposed Work 9.4.1 Application of AI in Finding Heart Disease 9.4.2 Data Pre-Processing and Classification of Heart Disease 9.5 Results and Discussions 9.6 Conclusion References 10 Battery Life and Electric Vehicle Range Prediction 10.1 Introduction 10.2 Different Stages of Electrification of Electric Vehicles 10.2.1 Starting and Stopping 10.2.2 Regenerative Braking 10.2.3 Motor Control 10.2.4 EV Drive 10.3 Estimating SoC 10.3.1 Cell Capacity 10.3.2 Calendar Life 10.3.3 Cycling Life 10.3.4 SoH Based on Capacity Fade 10.3.5 SoH Based on Power Fade 10.3.6 Open Circuit Voltage 10.3.7 Impedance Spectroscopy 10.3.8 Model-Based Approach 10.4 Kalman Filter 10.4.1 Sigma Point Kalman Filter 10.4.2 Six Step Process 10.5 Estimating SoH 10.6 Results and Discussion 10.7 Conclusion References 11 AI-Driven Healthcare Analysis 11.1 Introduction 11.2 Literature Review 11.3 Feature Extraction 11.3.1 GLCM Feature Descriptors 11.4 Classifiers 11.4.1 Stochastic Gradient Descent Classifier 11.4.2 Naïve Bayes Classifier 11.4.3 K-Nearest Neighbor Classifier 11.4.4 Support Vector Machine Classifier 11.4.5 Random Forest Classifier 11.4.6 Working of Random Forest Algorithm 11.4.7 Convolutional Neural Network 11.4.7.1 Activation Function 11.4.7.2 Pooling Layer 11.4.7.3 Fully Connected Layer (FC) 11.5 Results and Conclusion 11.5.1 5,000 Images 11.5.2 10,000 Images References 12 A Novel Technique for Continuous Monitoring of Fuel Adulteration 12.1 Introduction 12.1.1 Literature Review 12.1.2 Overview 12.1.3 Objective 12.2 Existing Method 12.2.1 Module-1 Water 12.2.2 Module-2 Petrol 12.2.3 Petrol Density Measurement 12.2.4 Block Diagram 12.2.5 Components of the System 12.2.5.1 Pressure Instrument 12.2.5.2 Sensor 12.2.6 Personal Computer 12.2.7 Petrol Density Measurement Instrument Setup 12.2.7.1 Setup 1 12.2.7.2 Setup 2 12.2.7.3 Setup 3 12.2.7.4 Setup 4 12.2.7.5 Final Setup 12.3 Interfacing MPX2010DP with INA114 12.3.1 I2C Bus Configuration for Honeywell Sensor 12.3.2 Pressure and Temperature Output Through I2C 12.4 Results and Discussion 12.5 Conclusion References 13 Improved Merkle Hash and Trapdoor Function–Based Secure Mutual Authentication (IMH-TF-SMA) Mechanism for Securing Smart Home 13.1 Introduction 13.2 Related Work 13.3 Proposed Improved Merkle Hash and Trapdoor Function–Based Secure Mutual Authentication (IMH-TF-SMA) Mechanism for Securing 13.3.1 Threat Model 13.3.2 IMH-TF-SMA Mechanism 13.3.2.1 Phase of Initialization 13.3.2.2 Phase of Addressing 13.3.2.3 Phase of Registration 13.3.2.4 Phase of Login Authentication 13.3.2.5 Phase of Session Agreement 13.4 Results and Discussion 13.5 Conclusion References 14 Smart Sensing Technology 14.1 Introduction 14.1.1 Sensor 14.1.1.1 Real-Time Example of Sensor 14.1.1.2 Definition of Sensors 14.1.1.3 Characteristics of Sensors 14.1.1.4 Classification of Sensors 14.1.1.5 Types of Sensors 14.1.2 IoT (Internet of Things) 14.1.2.1 Trends and Characteristics 14.1.2.2 Definition 14.1.2.3 Flow Chart of IoT 14.1.2.4 IoT Phases 14.1.2.5 Phase Chart 14.1.2.6 IoT Protocol 14.1.3 WPAN 14.1.3.1 IEEE 802.15.1 Overview 14.1.3.2 Bluetooth 14.1.3.3 History of Bluetooth 14.1.3.4 How Bluetooth Works 14.1.3.5 Bluetooth Specifications 14.1.3.6 Advantages of Bluetooth Technology 14.1.3.7 Applications 14.1.4 Zigbee (IEEE 802.15.4) 14.1.4.1 Introduction 14.1.4.2 Architecture of Zigbee 14.1.4.3 Zigbee Devices 14.1.4.4 Operating Modes of Zigbee 14.1.4.5 Zigbee Topologies 14.1.4.6 Applications of Zigbee Technology 14.1.5 WLAN 14.1.5.1 Introduction 14.1.5.2 Advantages of WLANs 14.1.5.3 Drawbacks of WLAN 14.1.6 GSM 14.1.6.1 Introduction 14.1.6.2 Composition of GSM Networks 14.1.6.3 Security 14.1.7 Smart Sensor 14.1.7.1 Development History of Smart Sensors 14.1.7.2 Internal Parts of Smart Transmitter 14.1.7.3 Applications 14.1.8 Conclusion References Index Also of Interest Check out these published and forthcoming titles in the “Artificial Intelligence and SoftComputing for Industrial Transformation EULA