دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: فناوری نانو ویرایش: نویسندگان: Rakesh Kumar Sonker, Kedar Singh, Rajendra Sonkawade سری: ISBN (شابک) : 9811926840, 9789811926846 ناشر: Springer سال نشر: 2022 تعداد صفحات: 304 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 10 مگابایت
در صورت تبدیل فایل کتاب Smart Nanostructure Materials and Sensor Technology به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب فناوری مواد و حسگرهای نانوساختار هوشمند نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Contents 1 Smart Nanomaterials and Sensing Devices: An Introduction 1.1 Introduction 1.1.1 Different Types of Nanoparticles 1.2 Briefing of Smart Nanomaterials 1.2.1 Semiconductor Nanoparticles (i.e. Colloidal Quantum Dots) 1.2.2 II - VI QDs 1.2.3 IV−VI QDs 1.2.4 III−V QDs 1.2.5 I−III−VI QDs 1.2.6 I−VI QDs 1.2.7 IV QDs 1.2.8 Metal Halides Perovskite (I–IV-VII3)-based Colloidal Quantum Dots 1.2.9 Carbon-Based Nanoparticles 1.3 Ceramic Nanoparticles 1.4 Metal Nanoparticles 1.5 Briefing of Sensing Devices (i.e. Sensors) 1.5.1 Different Types of Sensors 1.6 Modern Sensors 1.7 Conclusions References 2 Fundamentals of Nanomaterials and Design Concepts for Sensing Devices 2.1 Introduction 2.2 Nanomaterial Synthesis 2.2.1 Physical Methods 2.2.2 Chemical Methods 2.2.3 Biological Methods 2.3 Classification of Magnetic Nanoparticles 2.3.1 Oxide 2.3.2 Metallic 2.3.3 Metallic with a Shell 2.4 Comparison of Different Synthesis Routes 2.5 Characterization of Magnetic NPs 2.5.1 Morphology 2.5.2 Composition Mapping 2.5.3 Structure and Bonding 2.5.4 Magnetism 2.6 Special Features of Magnetic Nanoparticles 2.6.1 Finite-Size Effects 2.6.2 Surface Effect 2.6.3 Quantum Size Effect 2.6.4 Macroscopic Quantum Tunneling Effect 2.7 MNP Sensors 2.7.1 Electrochemical 2.7.2 Optical 2.7.3 Piezoelectric 2.7.4 Magnetic Field 2.8 Magnetic Sensor Devices Based on Magneto Resistance (MR) Effect 2.8.1 Working Principle of MR Sensors 2.9 Conclusion References 3 General Methods for Fabrication of Sensing Devices 3.1 Introduction 3.2 Mechanism of Gas Sensing 3.3 Distinct Factors Effecting the Sensing Performance of MoS2 3.4 General Methods for MoS2 Synthesis 3.5 Fabrication of MoS2-Based Sensing Devices for Gas Sensing Applications 3.6 Conclusion and Future Perspective References 4 Functional Nanomaterials for Sensing Devices 4.1 Introduction 4.2 Functional Nanomaterials 4.2.1 Metal-Based Nanomaterials 4.2.2 Metal Oxide-Based Nanomaterials 4.2.3 Carbon-Based Nanomaterials 4.2.4 Conducting Polymer-Based Nanomaterials 4.3 Conclusion, Challenges, and Future Perspective 4.4 Additional Reading References 5 Micro and Nanofibers-Based Sensing Devices 5.1 Introduction 5.2 Basics of Fiber Optics 5.3 Methodology 5.3.1 Electrospinning 5.3.2 Plasma-enhanched Chemical Vapor Depositions 5.4 Fiber Optics as Sensor 5.4.1 Mach–Zehnder Interferometer (MZI)-Based Fiber Optic Sensor 5.4.2 Fiber Grating Sensors 5.4.3 Fabry–Perot Interferometer (FPI)-Based Fiber Optic Sensor 5.4.4 Surface Plasmon Resonances Sensors 5.4.5 Whispering Gallery Mode Sensor 5.5 Application of Fiber Optics Sensors 5.5.1 For pH Sensing 5.5.2 Fiber Optic Gas Sensor 5.6 Conclusions and Outlooks References 6 Environmental Impact of Sensing Devices 6.1 Introductions 6.2 Environmental Components and Sensing Devices 6.2.1 Electrochemical and Microelectrochemical System 6.2.2 Optical Devices 6.2.3 Semiconductor Sensing Devices 6.2.4 Biosensor 6.3 Application of Biosensor to Track Environment 6.3.1 Biosensor for Pesticide 6.3.2 Biosensor for Heavy Metal Detection 6.3.3 Other Environmental Pollutants 6.4 Biosensor for Detecting SARS-CoV-2 6.5 Conclusion References 7 Advanced Carbon-Based Gas Sensors 7.1 Introduction 7.1.1 Carbon Quantum Dots (CQDs) 7.1.2 Graphene 7.1.3 Carbon Nanotubes (CNTs) 7.1.4 Fullerene 7.1.5 Carbon Black (CB) 7.1.6 Carbon Nanofiber 7.1.7 Nanodiamond 7.1.8 Conclusion References 8 2D/3D Material for Gas Sensor 8.1 Introduction 8.2 Classifications of Gas Sensors 8.2.1 Electrochemical Sensors 8.2.2 Catalytic Sensors 8.2.3 Infrared Sensors 8.2.4 Photoionization Sensors 8.3 Design and Fabrication of Gas Sensor 8.4 Working Principle of Gas Sensor 8.5 Nanostructure Materials for Gas Sensors 8.5.1 Production of 3D Graphene Structures 8.5.2 Nanostructure Materials Sensing of Toxic Gases 8.5.3 Conclusions References 9 Gas Sensors Based on Metal Oxide 9.1 Introduction 9.2 Emergence of Metal Oxide Gas Sensor 9.3 Theoretical Background and Their Mechanism Gas Sensor 9.4 Structure of Gas Sensors 9.5 Properties of Metal Oxide 9.5.1 Adsorption Ability 9.5.2 Catalytic Activity 9.5.3 Sensitivity 9.5.4 Thermodynamic Stability 9.6 Classifications of Gas Sensors 9.7 Classification of Metal Oxide 9.7.1 Transition Metal Oxide (TMO) 9.7.2 Non-transition Metal Oxide (NTMO) 9.8 Synthesis of Metals Oxide Nanoparticles 9.8.1 RF/DC Sputtering Method 9.8.2 Spray Pyrolysis Method 9.8.3 Sol-gel Method 9.8.4 Hydrothermal Method 9.8.5 Thermal Evaporation Method 9.9 Co-doped Metal Oxide Gas Sensors 9.10 Applications of Sensors 9.11 Conclusion References 10 Gas Sensors Based on Chalcogenides 10.1 Introduction 10.2 Chalcogenides and Their Role in the Gas Sensor 10.3 Zinc Chalcogenides-based Gas Sensor 10.4 Tungsten Chalcogenides-based Gas Sensor 10.5 Molybdenum Chalcogenides-based Gas Sensor 10.6 Lead Chalcogenides-based Gas Sensor 10.7 Copper Chalcogenides-based Gas Sensor 10.8 Cadmium Chalcogenides-based Gas Sensor 10.9 Iron Chalcogenides-based Gas Sensor 10.10 Tin Chalcogenides-based Gas Sensor 10.11 Conclusion and Outlook References 11 Metal-Organic Frameworks for Gas Sensors 11.1 Introduction 11.1.1 Classification of MOFs 11.2 Synthesis of MOFs and MOFs-Derived Composites 11.3 Methods and Sensing Mechanism of MOFs Sensor 11.3.1 Sensor Parameters 11.4 Metal-Organic Frameworks as Chemiresistive Sensor 11.4.1 Pristine MOF-Based Chemiresistive Gas Sensors 11.4.2 MOF-Metal Oxide Composites 11.4.3 MOF-Derived Chemiresistive Sensors 11.5 Challenges of Conventional Sensor and Opportunities 11.6 Conclusions References 12 Perovskite-Based Gas Sensors 12.1 Introduction 12.2 Structure and Properties of Perovskite Material 12.3 Perovskites Merged Nanocomposites as Sensors 12.3.1 Advantages and Restrictions 12.4 Fabrication Techniques of Gas Sensors 12.4.1 Screen Printing 12.4.2 Chemical Vapor Deposition Technique 12.4.3 Sol-gel Technique 12.4.4 Physical Vapor Deposition Technique 12.4.5 Drop Coating Technique 12.4.6 Spray Pyrolysis Technique 12.5 Perovskite Gas Sensors 12.6 Gas Detection Mechanism of Perovskite-Based Gas Sensor 12.7 Sensing Response of Led Halide Perovskite-Based Gas Sensor 12.8 Conclusion and Endorsement for Future Research References 13 Gas Sensors Based on Hybrid Nanomaterial 13.1 Introduction 13.1.1 Need of Gas Sensor Based on Hybrid Nanomaterial 13.1.2 Features and Limitations of Hybrid Materials for Sensor Application 13.2 An Overview of Detection of Toxic Gases Based on Hybrid Nanomaterials 13.2.1 Metal Oxide-Polymers Hybrid Composites 13.2.2 Metal Oxide–Carbon Hybrid Composite 13.2.3 Metal-Doped Hybrid Composites 13.2.4 Polymer-Carbon Hybrid Composite 13.3 Conclusion and Future Perspectives References 14 Gas Sensor Based on Ferrite Materials 14.1 Introduction 14.2 Effect of Parameters on Ferrite Gas Sensor 14.2.1 Pore Size 14.2.2 Sensitivity 14.2.3 Characteristics Response 14.2.4 Hysteresis 14.2.5 Selectivity 14.2.6 Operating Temperature 14.2.7 Additives/Dopants 14.2.8 Radiation Effect 14.2.9 Phase Formation 14.2.10 Particle Size/Grain Size, Crystallite Size 14.3 Ferrite Materials 14.4 Types of Ferrite 14.4.1 Simple Ferrite 14.4.2 Mixed Ferrite 14.4.3 Substitutional Ferrite 14.5 Ferrite Crystal Structures 14.5.1 Spinel Structure 14.5.2 Garnet Structure 14.5.3 Hexagonal Structure 14.6 Effect of Morphology on Ferrite Gas Sensor 14.7 Gas Sensing Mechanism of Ferrite Nanomaterial 14.8 Ferrite Gas Sensor 14.9 Conclusion and Prospects for Future of Ferrite Materials References