ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Smart Nanomaterials Targeting Pathological Hypoxia

دانلود کتاب نانومواد هوشمند هیپوکسی پاتولوژیک را هدف قرار می دهند

Smart Nanomaterials Targeting Pathological Hypoxia

مشخصات کتاب

Smart Nanomaterials Targeting Pathological Hypoxia

ویرایش:  
نویسندگان: , ,   
سری: Smart Nanomaterials Technology 
ISBN (شابک) : 9819917174, 9789819917174 
ناشر: Springer 
سال نشر: 2023 
تعداد صفحات: 416
[417] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 14 Mb 

قیمت کتاب (تومان) : 51,000

در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 2


در صورت تبدیل فایل کتاب Smart Nanomaterials Targeting Pathological Hypoxia به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب نانومواد هوشمند هیپوکسی پاتولوژیک را هدف قرار می دهند نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Preface
Contents
About the Editors
Smart Nanotechnology in Pathological Hypoxia: An Innovative Avenue for a Clinical Hurdle
	1 Introduction
		1.1 Molecular Responses to Hypoxia—Hypoxia-Inducible Factors and Allied Pathways
	2 Smart Nanomaterials
		2.1 Smart Nanomaterials Targeting Hypoxic Tissues
	References
Bioinspired Nanosystems Interacting with the Host Environment: Smart Nanosystems
	1 Introduction
	2 Smart Nanosystems in Drug Delivery
	3 Targeted Drug Delivery Approaches
	4 Bioinspired Nanocarriers
		4.1 Lipid Nanostructures
		4.2 Lipid Nanoparticles (LNPs)
		4.3 Lipid Nanocapsules (LNCs)
		4.4 Lipid-Based Micelles
		4.5 Viral Vectors
		4.6 Liposome-Based Nanocarriers
		4.7 Polymeric Nanocarrier
	5 Nanorobotics
		5.1 Targeted Motion
		5.2 Drug Release Mechanism
	6 Potential and Limitations of Smart Nanosystem
	7 Conclusion
	References
Nanotechnology-Based Approaches to Relieve Tumour Microenvironment Hypoxia via Enhanced Oxygen Delivery
	1 Introduction
	2 Nanotechnology-Based Approaches for O2 Delivery in Hypoxic Site
		2.1 Nanochemical Decomposition for O2 Release
		2.2 Breakdown of Catalase to Generate O2
		2.3 Water-Based Splitting to Produce O2
	3 Various Strategically Used Nanomaterials for TME Hypoxia
		3.1 PFC-Based Oxygen Carriers (PFOCs) and Fe2+ Porphyrin Systems
		3.2 Artificial Red Blood Cells Substitute (RBCSs)
		3.3 Metal–Organic Framework (MOFs)
		3.4 Oxygen Microcapsules
	4 Nanotechnology-Based Therapeutic Approaches for Hypoxia
		4.1 Nanoparticles Conquering Hypoxia-Inducing Factor
		4.2 Targeting Metastatic Hypoxic Condition by Nanodelivery Against Chemoresistance
		4.3 Nanoparticle Relieving: Lowering Hypoxic TME by Immunotherapy
	5 Conclusion
	References
Recent Progress in Hypoxia-Targeting: Peptide-Based Nanomaterials
	1 Introduction
	2 Polypeptide-Based Nanoparticles
	3 Self-Assembled Peptide-Based Nanoparticles
	4 Peptide and Polymer Conjugate Nanoparticles
	5 Peptide-Functionalized Liposomes
	6 Polysaccharides Functionalization Study by Peptides
	7 Conclusion and Outlook for the Future
	References
Recent Advancements in the Field of Stimuli-Responsive Polymeric Nanomaterials for Cancer Treatment
	1 Introduction
	2 Smart Polymeric Nanobiomaterials
		2.1 The Preparation Process of Stimuli-Responsive Polymers
	3 Physicochemical Characterization
		3.1 Single Stimuli-Responsive Smart Materials
		3.2 Dual Stimuli-Responsive Smart Materials
		3.3 Multi-stimuli-Responsive Smart Materials
	4 Anti-tumor Efficiency of Stimuli-Responsive Nanopolymers
		4.1 Single Stimuli-Responsive Smart Materials
		4.2 Dual Stimuli-Responsive Smart Materials
		4.3 Multi-stimuli-Responsive Smart Materials
	5 Conclusion
	References
Nanopoxia: Antimonene-Based Nanoplatform Targeting Cancer Hypoxia for Precision Cancer Therapy
	1 Introduction
	2 Different Approaches to Treat Cancer
		2.1 Photodynamic Therapy
		2.2 Photothermal Therapy
		2.3 Photoacoustic Imaging
		2.4 Biosensing
		2.5 Drug–Gene Delivery
	3 Role of Antimonene (AM) in Cancer Therapy
	4 Antimonene-Based Nanoplatform Targeting Cancer Hypoxia
	5 Conclusion
	References
Novel Strategies in Radiotherapy to Reduce Hypoxia Using Nanomaterials
	1 Introduction
	2 Nanotechnology in Radiotherapy
		2.1 Perfluorocarbons (PFCs) as O2 Carriers
		2.2 Red Blood Cell (RBC)-Based O2 Carriers
		2.3 H2O2 Catalyst-Based Reoxygenation Nanoplatforms
		2.4 Magnetic Nanoparticles
		2.5 High Atomic Number Elements-Based Nanoparticles
		2.6 Nanospheres
		2.7 Salmonella Typhi Ty21A GNPs
		2.8 Nanocarriers with Hypoxia-Responsive Prodrugs
		2.9 Oxygen-Carrying Nanobubbles
		2.10 Haemoglobin-Based Oxygen Carriers
	3 Conclusion
	References
Nanoproteomics: An Approach for the Identification of Molecular Targets Associated with Hypoxia
	1 Introduction
	2 Proteomics and Nanotechnology (NT)
	3 Advantages of Nanoproteomics Over Traditional Proteomics Tools
		3.1 Protein Solubility in Sample Preparation
		3.2 Protein Sampling
		3.3 High Dynamic Range
		3.4 Proteome Complexity
		3.5 Data Analysis
	4 Application of Nanoproteomics for Hypoxia
		4.1 Molecular Markers of Hypoxia
		4.2 Hypoxia and Related Diseases
		4.3 Therapeutics with Molecular Markers
	5 Conclusion
	References
Nanomaterial-Mediated Theranostics for Vascular Diseases
	1 Introduction
		1.1 Nanotheranostics
		1.2 Vascular Diseases: Pathophysiology, Diagnosis and Treatment
	2 Nanomaterials as Theranostics for Vascular Diseases
		2.1 Atherosclerosis
		2.2 Aneurysm
		2.3 Myocardial Infarction
		2.4 Peripheral Vascular Diseases
		2.5 Neurovascular Diseases
		2.6 Thrombosis
	3 Advantages and Limitations of Nanoparticle-Mediated Theranostics
	4 Recent Advancements and Future Scope
	5 Conclusion
	References
Tissue Oxygenation and pH-Responsive Fluorescent Nanosensors in Tumor Diagnosis
	1 Introduction
	2 Hypoxia Responsive Fluorescent Nanosensors for Cancer Diagnosis
	3 pH-Responsive Fluorescent Nanosensors for Cancer Diagnosis
	4 Dual (Acidosis–Hypoxia)-Mode Fluorescent Nanosensors for Cancer Diagnosis
	5 Conclusion
	References
Hypoxia Responsive Nanomaterials for Cerebral Ischemia Diagnosis
	1 Introduction
	2 Hypoxia and Cerebral Ischemia
	3 Cerebral Ischemia Diagnosis Practices and Recent Advances
	4 Available Treatment Strategies for Cerebral Ischemia
	5 Nanoparticles as Effective Drug Delivery System for the Treatment of Cerebrovascular Diseases
		5.1 Emerging Role of Nanoparticles for Ischemic Stroke Therapy
	6 Novel Tools Towards Early Diagnosis of Cerebral Ischemia and Implication of Nanotechnology
	7 Current Status on Hypoxia Responsive Nanomaterials for Early Diagnosis of Cerebral Ischemia
	8 Conclusion
	References
Multifunctional Hypoxia Imaging Nanoparticles
	1 Introduction
	2 Types of Nanoparticles
		2.1 Self-assembled Nanoparticles
		2.2 Core–Shell Nanoparticles
		2.3 Micelle-Liposome-Like Nanoparticle
		2.4 Matrix-Dispersed Nanoparticles
	3 Hypoxia Imaging Tumor-Directed Nanoparticles
		3.1 Hypoxia Imaging by Phosphorescent Hypoxia Probe
	4 Hypoxia Active Nanoparticles for Chemotherapy
	5 Conclusion and Future Scope
	References
Anaerobic Bacteria Mediated Hypoxia Specific Delivery of Nanoparticles
	1 Introduction
	2 Hypoxia in Cancer—Occurrence and Interactions
		2.1 Development of Hypoxia
		2.2 Development of Different Variations of Hypoxia
		2.3 Interactions with Conventional Therapies
		2.4 Influence of Genetic Variabilities
		2.5 Role in Cancer Progression and Recurrence
		2.6 Hypoxia and Its Role in Drug Resistance
	3 Emerging Role of Anaerobic Bacteria in Cancer Therapies
		3.1 Mechanisms of Anaerobic Bacteria Colonisation and Its Action Against Cancer
	4 Utility of Nano-Systems Vis-À-Vis Anaerobic Bacteria Against Cancer and Hypoxia
		4.1 Use of Nano-Systems for Drug Delivery
		4.2 Utility of Nano-Systems in Combination with Properties of Anaerobic Bacteria
		4.3 Mechanisms Using Nanomaterial-Bacteria Conjugates as Delivery Systems
		4.4 Leading Examples of Studies Using Anaerobic Bacteria Mediated Delivery of Nanomaterials Against Hypoxia
		4.5 Utilisation of Genetic Intervention in Addition to Nanomaterial-Bacteria Conjugates
		4.6 Impediments in the Use of Conjugates
	5 Utility of Conjugates in Supplementing and Enhancing the Conventional Therapies
		5.1 Utility in PTT and MRI
	6 Conclusion
	References
Phytoactive Ingredient-Loaded Theranostics
	1 Introduction
		1.1 Formulations
		1.2 Therapeutic Applications
		1.3 Diagnostics Applications
	2 Future Perspectives
	References
Smart Nanomaterials for Alleviating the Limitation of Photodynamic Therapy
	1 Introduction
	2 Photodynamic Therapy (PDT)
	3 Role of PDT in Cancer Treatment
		3.1 Advantages of PDT Over Other Cancer Treatment Modalities
	4 Current Limitations of PDT
	5 Nanomedicine to Enhance the Effectiveness of PDT
		5.1 Nanocarriers in PDT for Tumor Targeting
		5.2 Nanostructured Photosensitizers
		5.3 Self Light Emitting Methods
		5.4 Nanoparticle-Based Strategies to Relieve Hypoxia in Tumor Microenvironment
	6 Conclusions
	References
Redox Responsive Smart Nanomaterials to Tackle Hypoxia Associated Oxidative Damage and Inflammatory Mediators Using Phytocompounds
	1 Introduction
	2 Nanotechnology-Based Methods for Regulating Tumour Hypoxia
	3 Natural and Artificial Materials for O2 and Curcumin Delivery
	4 The Hydrolysis of Exogenous Peroxide and O2 Production
	5 Test of NPs’ Sensitivity to Oxidative Stress and Low pH
	6 The Behaviour of Curcumin Upon Intracellular Release
	7 Effects that Inhibit Excessive Oxidants
	8 Biodistribution of Curcumin
	9 Anti-inflammatory Activity of Curcumin
	10 Conclusion
	References
ROS Responsive Silica Nanoparticles for Controlled and Targeted Drug Delivery
	1 Introduction
	2 Hypoxia as a Source of ROS
	3 ROS-Endogenous Stimuli Responsive Silica Nanoparticles
		3.1 Silica Nanoparticles Fabricated Using Specific Cross-Linkers
		3.2 ROS-pH-Responsive Silica Nanoparticles
		3.3 ROS-Glucose Responsive Silica Nanoparticles
		3.4 ROS-Temperature Responsive Silica Nanoparticles
		3.5 In Situ Fenton-Like Reaction Generates ROS
		3.6 ROS-Glucose and Fenton-Like Reaction Silica Nanoparticles
		3.7 Improved Blood Brain Barrier (BBB) Permeability Using Silica Nanoparticles System
		3.8 Improved Delivery of Antimicrobials Against Bacterial Infections
		3.9 Improved Delivery of Anticancer Drugs
	4 Future Perspectives
	5 Conclusion
	References
New Developments in Nano-theranostics Combined with Intelligent Bio-responsive Systems
	1 Introduction: Nanomedicine in Theranostics
	2 Conclusion
	References
Nanozymes: A Potent and Powerful Peroxidase Substitute to Treat Tumour Hypoxia
	1 Introduction
		1.1 Peroxidase
		1.2 Tumour Hypoxia
		1.3 Nanozymes: Efficiency Over Natural Enzymes
		1.4 Antioxidant Nanozymes
		1.5 Pro-oxidant Nanozymes and Its Mechanism
		1.6 Peroxidase Mimetic Nanoparticles: Its Mode of Action
	2 Peroxidase Mimicking Nanozyme in Tumour Hypoxia
		2.1 Nanozyme Implementations for the Treatment of Hypoxic Tumour Environments (TMEs)
		2.2 Recent Advancements and Future Scope
	3 Application of Nanozymes
	4 Conclusion
	References
NMR-Based Pharmacometabonomics of Nanoparticles for Treating Hypoxia
	1 Background
	2 Role of Hypoxia in Different Pathological Conditions
		2.1 Cancer
		2.2 Infectious Diseases
		2.3 Diabetes
	3 Nanoparticles
	4 Pharmacometabonomics
		4.1 NMR-Based Pharmacometabonomics
	5 Conclusion
	References
Nanoceria and Hypoxia: Promises and Challenges
	1 Hypoxia and Altitude Sickness
	2 Oxidant Generation is Central to High-Altitude Sickness
	3 Antioxidants as Potential Agents to Combat High-Altitude Sickness
	4 Nanoceria as Potential Next-Gen Antioxidant Against Hypoxic-Perturbations
	5 Promises of Future Use of Nanoceria
	6 Challenges in Future Use of Nanoceria
	7 Conclusion
	References




نظرات کاربران