دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: مواد ویرایش: نویسندگان: Mahdi Bodaghi. Ali Zolfagharian سری: Additive Manufacturing Materials and Technologies Series ISBN (شابک) : 0323954308, 9780323954303 ناشر: Elsevier سال نشر: 2022 تعداد صفحات: 466 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 40 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Smart Materials in Additive Manufacturing, Volume 2: 4D Printing Mechanics, Modeling, and Advanced Engineering Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مواد هوشمند در ساخت افزودنی، جلد 2: مکانیک چاپ چهار بعدی، مدلسازی و کاربردهای مهندسی پیشرفته نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Front Cover Smart Materials in Additive Manufacturing, Volume 2: 4D Printing Mechanics, Modeling, and Advanced Engineering Applications Copyright Dedication Contents Contributors Editors biography Preface Acknowledgments Chapter 1: 4D printing mechanics, modeling, and advanced engineering applications Introduction 4D printing electro-induced shape memory polymers 4D printing modeling using ABAQUS: A guide for beginners 4D printing modeling via machine learning 4D-printed pneumatic soft actuators modeling, fabrications, and control 4D-printed auxetic structures with tunable mechanical properties 4D-printed shape memory polymers: modeling and fabrication 4D textiles-Materials, processes, and future applications Closed-loop control of 4D-printed hydrogel soft robots Hierarchical motion of 4D-printed structures using the temperature memory effect Manufacturing highly elastic skin integrated with twisted coiled polymer muscles: Toward 4D printing Multimaterial 4D printing simulation using grasshopper plugin Origami-inspired 4D RF and wireless structures and modules Shape-reversible 4D printing aided by shape memory alloys Variable stiffness 4D printing References Chapter 2: 4D printing electro-induced shape memory polymers Introduction Materials, working principle, and similar structures in 4D printing 4D printing with FDM Printing parameters and their influence on deformation of PLA Integration of conductive PLA Materials and equipment Electrical contacting of CPLA Printing parameter influence on resistance Investigation of SMP structures Design of SMP structure Manufacturing of SMP structures Measuring setup SMP structure behavior at different activation voltages Conductive layer placement influence on the performance Free bending of SMP structures Blocking force of SMP structures Conclusions Acknowledgments References Chapter 3: 4D printing modeling using ABAQUS: A guide for beginners Introduction Methodology 4D printing mechanism and design Modeling of thermo-mechanical 4D-printed structure Heat generation and temperature rise due to NIR light FEM model of the thermal-mechanical coupling in ABAQUS Results and discussions Conclusion References Chapter 4: 4D printing modeling via machine learning Introduction Methodology Fabrication Analytical model FEM modeling using hyperplastic material constitutive laws Training data acquisition from FEM Results and discussions Initial analysis of the data Linear regression Machine learning modeling using artificial neural network Layer configurations analysis Activation functions analysis 4D-printed soft actuator shape classification using ML Discussions Conclusion References Chapter 5: 4D-printed pneumatic soft actuators modeling, fabrication, and control Introduction 4D-printed pneumatic soft actuators Types Modeling Materials Fabrication Sensing and control Capabilities Self-healing properties and fail-safe features Scalability and customizability Modularity Multimodal and programmable actuation Applications Soft locomotion robots Soft grippers and parallel manipulators Soft artificial muscles Soft assistive wearable and medical devices Discussion Challenges of 4D-printed pneumatic soft actuators Portability Noise and vibration 3D-printing materials and printing time Mass production and lifetime Requirements for 4D-printed pneumatic soft actuators Conclusion References Chapter 6: 4D-printed structures with tunable mechanical properties Introduction Shape memory polymer material Stability and functional properties of 4D-printed specimens Geometric stability following heat exposure Stress-free shape recovery Tunable mechanical properties Tunability in simple structures Tunability in complex periodic structures The development of heterogeneities-Local response Summary and concluding remarks References Chapter 7: 4D-printed shape memory polymer: Modeling and fabrication Introduction 4D printing programming Constitutive equations Thermoviscoelastic approach Phase transformation approach Fabrication and modeling 4D-printed elements Materials 4D printing elements Finite element modeling Case studies Self-folding structures Gripper actuator Self-folding smart composites Adaptive dynamic structures Wave propagation formulation Design adaptive periodic structures Adaptive diagonal structure Adaptive parallel structure Conclusion References Chapter 8: 4D textiles: Materials, processes, and future applications Introduction State of the art Textile Fabric Printing method Prestressing technologies Rotational symmetric substrate Print parameters Interfaces Model Form giving through surface tessellation Applications Finger Orthosis Conclusion and outcomes References Chapter 9: Closed-loop control of 4D-printed hydrogel soft robots Introduction Motion mechanism of the soft actuator Materials and methods Fabrication of the actuator Optimizing the printing parameters Results and discussions Optimization of the 3D printing parameters Characterizations Mechanical tests results Swelling measurements Experimental setup and image processing Ionic strength effect Geometrical effects Actuation performance Electro-chemo-mechanical model of the 3D-printed polyelectrolyte actuator Controller design T-S fuzzy system formulations Conclusion References Chapter 10: Hierarchical motion of 4D-printed structures using the temperature memory effect Introduction Temperature memory effect: Basics and literature review Description Experimental testing Modeling and simulation Exploitation of the temperature memory effect toward applicative examples Experimental testing Testing protocol Preliminary experimental activity to assess the possibility to exploit the temperature memory effect Experimental activity to evaluate and model shape memory response for sequential SMEs Results of the screening protocol to assess the possibility to exploit the TME Thermomechanical testing Mechanical testing Results of the testing protocol based on the possibility to exploit the TME Results of the experimental activity for the generation of input data for the numerical simulation Constitutive modeling Model formulation Identification of model parameters Case study Conclusions and perspectives Acknowledgments References Chapter 11: Manufacturing highly elastic skin integrated with twisted and coiled polymer muscles: Toward 4D printing Introduction Materials TCP Silicone Manufacturing Results and discussion Conclusion References Chapter 12: Multimaterial 4D printing simulation using a grasshopper plugin Introduction Computational design for 4D printing Rationales and theoretical background The proposed tool: VoxSmart Case studies Modeling and simulation of known material distributions Bimaterial beam Hydrogel actuator Magnetostrictive actuator Material distribution generation Attempt to retrieve a known distribution Distribution computation with enforced symmetry and initial population Conclusion and future work Appendix: The distribution Computation component References Chapter 13: Origami-inspired 4D tunable RF and wireless structures and modules Introduction Inkjet-printing technologies Miura-Ori tessellation Frequency selective surfaces Origami-inspired inkjet-printed FSS structures Fabrication process Results and discussions Fabrication process of 4D-printed origami-inspired RF structures 3D-printing of the substrate Inkjet-print SU-8 buffer layer Inkjet-print the conductive layer 4D-printed origami-inspired frequency selective surfaces 4D-printed chipless RFID pressure sensors for WSN applications 4D-printed planar pressure sensor using metamaterial absorber 4D-printed planar pressure sensor using substrate integrated waveguide (SIW) technology 4D-printed origami-inspired deployable and reconfigurable antennas 4D-printed one-shot deployable dielectric reflectarray antenna for mm-wave applications Liquid-metal-alloy microfluidic-based 4D-printed reconfigurable origami antennas Conclusion References Chapter 14: Shape-reversible 4D printing aided by shape memory alloys Introduction Materials and methods Design of actuators Experimental procedure Simulation of actuation cycle Numerical and experimental results Conclusions References Chapter 15: Variable stiffness 4D printing Introduction Design and working principle Single-material actuators Variable infill percentages Variable infill patterns Patterns as hinges Multimaterial actuators Fabrication process and experimental setup Results and discussion Material properties Single-material actuators Variable infill percentages Variable infill patterns Patterns as hinges Multimaterial actuators Discussion Conclusion Acknowledgment References Index Back Cover