دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Mel Schwartz
سری:
ISBN (شابک) : 1420043722, 9781420043730
ناشر: CRC Press
سال نشر: 2008
تعداد صفحات: 556
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 24 مگابایت
در صورت تبدیل فایل کتاب Smart Materials به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مواد هوشمند نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
کارهای پیشرفتهای را از دانشمندان، مهندسان، مربیان و پزشکان برجسته جهان در این زمینه بررسی میکند چرا از مواد هوشمند استفاده میکنیم؟ از آنجایی که بیشتر مواد هوشمند جرم اضافه نمیکنند، مهندسان میتوانند سازهها را با پاسخهای داخلی به تعداد بیشماری اعطا کنند. از موارد احتمالی این مواد در اشکال مختلف خود می توانند با تغییر ویژگی ها با محیط خود سازگار شوند و اطلاعاتی در مورد تغییرات ساختاری و محیطی ارائه دهند. یک منبع واحد در جنبههای متعدد مواد هوشمند، مواد هوشمند بر بسیاری از انواع مواد جدید، از جمله سرامیک، کامپوزیتهای هیبریدی، آلیاژهای حافظهدار شکل، ژلهای مبتنی بر کیتوزان، چسبها، اکسیدها، پلیمرها، فناوریهای فلیپ تراشه، سیالات مغناطیسی، مواد الکترورئولوژیکی تمرکز دارد. نانولوله ها و حسگرها ماهیت بینرشتهای این مواد را با نشان دادن چگونگی استفاده از آنها در بسیاری از زمینهها، مانند سیستمهای تحویل دارو، نظارت بر سلامت، فیبر نوری، مهندسی در مقیاس نانو، کنترل ارتعاش، و چاپ مولکولی برجسته میکند. به دست آوردن بینش از کارشناسان برجسته متخصص در فناوری مواد هوشمند با بیش از پنجاه سال تجربه کار و تدریس در این زمینه، ویراستار مشارکتهای بینشآمیز متعددی را از گروه گستردهای از کارشناسان برجسته گردآوری کرده است. در این جلد، آنها تخصص خود را به اشتراک میگذارند و پیشرفتهای نوآورانهای را که در محصولات، اجزا، سیستمها و ساختارهای هوشمند رخ داده است، بررسی میکنند.
Explores State-of-the-Art Work from the World’s Foremost Scientists, Engineers, Educators, and Practitioners in the Field Why use smart materials?Since most smart materials do not add mass, engineers can endow structures with built-in responses to a myriad of contingencies. In their various forms, these materials can adapt to their environments by changing characteristics and can provide information about structural and environmental changes. A single source on numerous aspects of intelligent materialsSmart Materials focuses on many types of novel materials, including ceramics, hybrid composites, shape memory alloys, chitosan-based gels, adhesives, oxides, polymers, flip-chip technology, magnetorheological fluids, electrorheological materials, nanotubes, and sensors. It highlights the interdisciplinary nature of these materials by showing how they can be used in scores of areas, such as drug delivery systems, health monitoring, fiber optics, nanoscale engineering, vibration control, and molecular imprinting. Gain insight from leading experts who specialize in smart materials technologyWith over fifty years of experience working and teaching in this field, the editor has compiled numerous insightful contributions from an extensive group of leading experts. In this volume, they share their expertise and explore the innovative progress that has occurred in smart material products, components, systems, and structures.
9781420043730.fmatt......Page 1
Smart Materials......Page 3
Contents......Page 7
Preface......Page 11
Editor......Page 15
Contributors......Page 17
1.2 Models and Theoretical Background......Page 21
1.3 Experimental Methods for the Measurement of Residual Stress......Page 22
1.4 Residual Stress-Dependent Optical Properties of Some Layered Structured Semiconductors......Page 24
References......Page 32
2.2.1 Process Definition......Page 35
2.2.2 Merits of Hydrothermal Synthesis of Ceramics......Page 36
2.3.1 Construction of a Thermodynamic Model......Page 38
2.3.2 Methodology for Generating Stability and Yield Diagrams......Page 40
2.4.1 Thermodynamic Variables......Page 41
References......Page 42
3.1 Introduction......Page 45
3.2.1 Diffusion–Dissolution Method......Page 46
3.2.2 Polymerization–Diffusion Method......Page 47
3.3.1 Amorphous Polymer/Amorphous Polymer Miscible Blend (Dissolution–Diffusion Method)......Page 49
3.3.2 Amorphous Polymer/Crystalline Polymer Miscible Blend (Dissolution–Diffusion Method)......Page 50
3.3.3 Amorphous Polymer/Amorphous Polymer Immiscible Blend (Dissolution–Diffusion Method)......Page 51
3.4.1.1 Tensile Properties......Page 52
3.4.1.3 Smart Performance (DMA Properties)......Page 53
3.4.2 Functional and Smart Performances of PEO/PLLA Graded Blend......Page 55
3.4.3 Functional and Smart Performances of PEO (or PEO/LiOCl4)/PBMA Graded Blend......Page 56
References......Page 57
4.2.1.1.1 Substitute for Steel?......Page 59
4.3.1 Active Control of Structures......Page 60
4.3.2 Passive Control of Structures......Page 61
4.3.5.2 SMA for Seismic Retrofit of Bridges......Page 62
4.3.7 Self-Stressing for Active Control......Page 63
4.3.10 Active Structural Control against Wind......Page 64
References......Page 65
5.1.1 Introduction......Page 67
5.1.1.1.3 Natural and Synthetic Fibers......Page 68
5.1.1.1.4 Miscellaneous Reinforcements......Page 69
5.1.1.2 Matrix Hybridized Composites......Page 70
5.1.1.4.2 Selective Reinforcement......Page 71
5.1.2 Future Directions......Page 72
5.2.1.1 Bending–Torsion Coupling Spars......Page 73
5.2.2.2 Active System......Page 74
5.2.3.2 Wing Design and Fabrication......Page 75
5.2.3.3 RPV: Flight Tests......Page 78
5.2.4 Concluding Remarks......Page 79
References......Page 82
6.1.1 Review of Shape Memory Alloy......Page 83
6.1.2 Ferromagnetic Shape Memory Alloy......Page 84
6.1.3.1 Magnetic Field–Induced Phase Transformation......Page 86
6.1.3.3 SIM Phase Transformation by Magnetic Field Gradient......Page 87
6.2 FSMA-Based Actuator......Page 88
References......Page 92
7.1 Introduction......Page 95
7.2 Smart Structures for Flight in Nature......Page 97
7.5 Range of Active Structures and Materials Applications in Aeronautics......Page 98
7.6.2 Rigidity of Wing Structures......Page 99
7.6.4 Passive Materials for Aircraft Structures......Page 100
7.8.2 Aeroelastic Effects......Page 101
7.8.2.1 Static Aeroelasticity......Page 102
7.8.2.2 Dynamic Aeroelasticity......Page 103
7.9.2 Fictitious Control Surface Concepts......Page 104
7.9.6 Innovative Aerodynamic Control Surface Concepts......Page 105
7.9.7 Active Structures and Materials Concepts......Page 106
7.9.9 Adaptive All-Movable Aerodynamic Surfaces......Page 107
7.10 Quality of the Deformations......Page 108
7.11 Achievable Amount of Deformation and Effectiveness from Different Active Aeroelastic Concepts......Page 109
7.12 Need for the Analysis and Analytical Design Optimization of Active Structures Concepts......Page 110
7.13 Summary and Conclusions......Page 111
Appendix A: Future Directions......Page 112
A.7.3 Example for the Interaction of Structural, Aerodynamic, and Aeroelastic Constraints for Different Wing Tip Design Concepts......Page 113
References......Page 114
8.2 Electrochemical Concepts Involved in a Battery......Page 117
8.4 Lithium Ion Batteries......Page 118
8.4.1 Layered Oxide Cathodes......Page 120
8.4.2 Spinel Oxide Cathodes......Page 121
8.4.4 Carbon Anodes......Page 122
References......Page 123
9.1.2 Piezoelectric and Electrostrictive Effects in Ceramic Materials......Page 125
9.1.3 Measurements of Piezoelectric and Electrostrictive Effects......Page 128
9.1.4.2 Piezoelectric and Electrostrictive Ceramics......Page 130
9.1.4.3 Processing of Piezoelectric Ceramics......Page 131
9.1.5 Piezoelectric Composites......Page 132
9.1.6 Applications of Piezoelectric and Electrostrictive Ceramics......Page 133
References......Page 135
9.2.1.2 Piezoelectric Effect......Page 136
9.2.2.2 Piezoelectric Coefficients......Page 137
9.2.2.3 History of Piezoelectricity......Page 138
9.2.3.2.1 Barium Titanate......Page 139
9.2.3.2.3 Lead Titanate......Page 140
9.2.3.2.4 Relaxor Ferroelectrics......Page 141
9.2.3.5 Thin Films......Page 142
9.2.4.1 Pressure Sensor/Accelerometer/Gyroscope......Page 143
9.2.4.2 Ultrasonic Transducer......Page 144
9.2.4.4 Piezoelectric Transformer......Page 145
9.2.4.5 Saw Device......Page 146
9.2.4.6 Actuators......Page 147
9.2.4.7 USMs......Page 149
9.3.1 Introduction......Page 151
9.3.2 NCU Transducers......Page 152
9.3.4.2 T-R Pitch-Catch Same Side Reflection NCU......Page 154
9.3.5 Perusal of NCU......Page 159
References......Page 164
10.1.2.1 Hydrogen Bond Complexes......Page 165
10.1.2.2 PEC......Page 167
10.1.2.3 Grafted and Block Network......Page 168
10.1.2.4 Self-Assembly......Page 169
10.1.3.1 Controlled Release Matrixes......Page 170
10.1.3.2 Separation Membranes......Page 172
10.1.3.5 Field-Responsive Materials......Page 173
References......Page 174
10.2.2 Chitosan and Chitosan Derivatives......Page 177
10.2.3 Hydrogels......Page 178
10.2.3.2 Physical Hydrogels......Page 179
10.2.4.2.1 Bone Repair......Page 180
References......Page 181
11.1 Smart Adhesives......Page 185
11.2.1 Introduction......Page 188
11.2.2 Perovskite LaCoO3: A n- or p-Type Oxide......Page 189
11.2.3 Orthochromites Pr1−xCaxCrO3: Role of the Spin and Orbital Degeneracies......Page 190
11.2.4 Large Thermopower in Metallic Oxides: The Misfit Layer Oxides......Page 191
11.2.4.1 Influence of Doping......Page 192
11.2.4.3 Electrical Resistivity and Thermal Conductivity......Page 193
11.2.5 SrRuO3: A Metallic Perovskite with a Thermoelectric Power Driven by the Spin Degeneracy Term......Page 194
References......Page 195
11.3.1 Introduction......Page 196
11.3.2.2 Increase of Polymer Matrix Shrinkage......Page 197
11.3.2.6 Low-Temperature Sintering of Nanosilver Fillers......Page 198
11.3.2.2.2 Low-Moisture Absorption......Page 199
11.3.2.2.6 Oxide-Penetrating Particles......Page 200
11.3.2.4 Improvement of Impact Performance......Page 201
11.3.3 Anisotropic Conductive Adhesives and Films......Page 202
11.3.3.1.2 Low-Temperature Sintering of Nano Ag Filled ACA......Page 203
11.3.3.4 Nanowire ACF for Ultrafine Pitch Flip-Chip Interconnection......Page 204
11.3.4 Nonconductive Adhesives and Films......Page 205
11.3.4.2 NCAs with Improved Reliability for Flip-Chip Assembly......Page 206
References......Page 207
11.4.2 Principle of the Galvanic Cell......Page 209
11.4.3.1 Tungsten Oxide Gels for the Active Electrochromic Layer......Page 211
11.4.4 Conclusions......Page 212
References......Page 213
12.2 Cure Monitoring......Page 215
12.3 Health Monitoring......Page 217
Bibliography......Page 219
13.1.1 Introduction......Page 221
13.1.2.1 Thermoresponsive Polymers......Page 222
13.1.2.2 pH-Sensitive Polymers......Page 223
13.1.2.3.2 Glutathione......Page 224
13.1.2.4.6 Light......Page 225
13.1.4 Conclusions......Page 226
References......Page 227
13.2.2.1 Control of Drug Concentration Levels Over Time......Page 230
13.2.3.4 Calcium-Stimulated Systems......Page 231
13.2.4.5.2 Morphine Triggered Naltrexone Delivery System......Page 232
13.2.5 Concluding Remarks......Page 233
References......Page 234
14.1.1 Introduction......Page 237
14.1.2 Fiber Optic Sensors......Page 238
14.1.3.1 Intensity-Modulated Sensors......Page 240
14.1.3.2 Polarimetric Sensors......Page 241
14.1.3.3 Interferometric Sensors......Page 242
14.1.4 Emerging Optical Fiber Concepts......Page 244
14.1.4.3 DFBG Sensors......Page 245
14.1.5 Selected Applications of Fiber Optic Sensors......Page 246
References......Page 250
14.2.2 Introduction......Page 253
14.2.3.1 Physics of Windows......Page 254
14.2.4 Survey of Smart Windows......Page 255
14.2.4.1.1 Inorganic Electrochromic Smart Windows......Page 257
14.2.4.3 Thermotropic Devices......Page 258
14.2.4.3.1 Hydrogels......Page 259
14.2.4.4 PDLC Devices......Page 260
14.2.4.5 Suspended Particle Devices......Page 261
14.2.5 Electrochromic Smart Windows......Page 262
14.2.5.1.3 Type 3—Ion Transport Layer and Complementary Counterelectrode......Page 263
14.2.5.2.2 Counterelectrode Materials......Page 264
14.2.5.3 Control of Electrochromic Smart Windows......Page 265
References......Page 266
15.1 Introduction......Page 271
15.2 Conventional Underfill Materials and Process......Page 272
15.3 Reliability of Flip-Chip Underfill Packages......Page 274
15.4 New Challenges to Underfill......Page 275
15.5 No-Flow Underfill......Page 277
15.5.1 Approaches of Incorporating Silica Fillers into No-Flow Underfill......Page 279
15.6 Molded Underfill......Page 281
15.7 Wafer Level Underfill......Page 282
References......Page 285
16.1 Introduction......Page 289
16.4 Isothermal Cure......Page 290
16.5.1 Thick Laminates......Page 292
16.5.2 Resin Infusion of Three-Dimensionally Advanced Fiber Architecture Preforms......Page 293
16.6 Automated Intelligent Closed Loop Control......Page 294
16.7.1 Monitoring Cure of Coatings......Page 295
16.8 Life Monitoring......Page 298
References......Page 299
17.2 MR Fluid History......Page 301
17.3.3 Additives......Page 303
17.4 Properties of Typical MR Fluids......Page 304
17.5.1 Valve Mode......Page 305
17.6 MR Fluid Applications......Page 306
References......Page 307
18.1 Concept of Intelligent Materials Processing......Page 309
18.2 Processing of Composite Materials......Page 310
18.2.1 Cure of Thermosetting Resins......Page 311
18.2.2 Sensors and Sensing Techniques for Composites Manufacturing......Page 312
18.2.3 Fiber Optic Sensors Applied to RTM Process Monitoring......Page 313
18.4 Conclusion......Page 317
References......Page 318
19.1 Magnets, Organic/Polymer......Page 319
19.1.3 Hexacyanometallate Room Temperature Magnets......Page 323
19.1.4 Uses of Organic/Polymeric Magnets......Page 324
References......Page 325
19.2.1 Introduction......Page 326
19.2.3 Characteristics and Physical Properties of GMM......Page 327
19.2.5 Applications of GMM......Page 329
19.2.5.2 Giant Magnetostrictive Torsional Actuator/Torque Sensor......Page 331
19.2.5.3 GMA for Valve Ring Indentation......Page 332
References......Page 334
20.1.1 Activation of the Shape Memory Alloys with Magnetic Field......Page 335
20.1.1.1 Magnetic Shape Memory Effect......Page 336
20.1.1.4 Giant Magnetocaloric Effect......Page 338
20.1.3.3 Damping......Page 339
References......Page 340
20.2.2 SMAs: A Brief Introduction from a Microsystem Design Prospective......Page 342
20.2.4.1 Two-Way SME......Page 344
20.2.4.2 Oriented Precipitates (All-Around Effect)......Page 345
20.2.5 Extrinsic Methods......Page 346
20.2.6 Monolithic Design: Laser Annealing of SMA (LASMA)......Page 348
20.2.7 Summary of SMA Actuator Design Methods......Page 349
References......Page 350
20.3.1 Introduction......Page 351
20.3.2.2 Isothermal Pseudoelastic Loading......Page 352
20.3.2.7 Reorientation......Page 353
20.3.2.8 Shape Memory Effect......Page 354
20.3.3.2 Macroscopic Models......Page 355
20.3.4 Formulation of SMM Models in the Framework of Thermomechanics with Internal Variables......Page 356
20.3.4.2 Choice of the Free Energy Function (Steps iii and iv)......Page 357
20.3.4.3 Choice of the Dissipation Function (Step v) and Derivation of the Transformation Kinetics......Page 358
20.3.4.4 Material Parameter Identification......Page 360
References......Page 361
20.4.1 SMAs and the Martensitic Transformation......Page 362
20.4.2.1 Fe-Based Alloys......Page 363
20.4.2.3 Ni–Ti Alloys......Page 364
20.4.2.5 High-Temperature SMAs......Page 365
20.4.3 Functional Properties of SMAs......Page 366
References......Page 369
20.5.1 Introduction......Page 370
20.5.2 Conservation Laws, Equations of State, and Constitutive Equations......Page 373
20.5.3 Informal Classification of Modeling Techniques for Smart Materials......Page 374
20.6 On the Microstructural Mechanisms of SMEs......Page 375
20.6.1 Microscopic Mechanisms......Page 376
20.6.2 Macroscopic Effects......Page 377
20.6.3 Summary......Page 379
References......Page 380
21.2 High-Yield Strength Electrorheological Fluids......Page 381
21.4 Giant ER Effect Materials......Page 382
21.5 Lamellar Particle Structures—Effect of Coupled Electric and Shear Fields......Page 383
21.6 Alternative Model for Yield Strength of ER Materials......Page 384
References......Page 385
22.1.1 Carbon Microtubular Morphologies......Page 387
22.1.2 Conical Carbon Nanotube Morphologies......Page 388
22.2.1 Synthesis Methods and Growth Mechanisms......Page 389
22.2.2 Control of Morphology......Page 392
22.3.1 Synthesis Methods and Growth Mechanisms......Page 394
22.3.2 Morphological Control......Page 396
22.4.2 Templates for Nanoelectrode Ensembles......Page 397
22.4.4 Porous Carbons......Page 398
22.4.5 Drug Delivery, Fluid Flow, and Other Miscellaneous Applications......Page 399
References......Page 400
23.2 Smart Coating Technologies for Corrosion Protection......Page 403
23.2.2.1.3 Background and History of ICPs......Page 404
23.2.2.1.5.1 PANI on Steel with Phosphonate Dopants......Page 406
23.2.2.1.5.3 Other Polymer Dopant Combinations......Page 412
23.2.2.1.6 Redox Polymers......Page 413
23.2.2.2 Chemical Potential......Page 414
23.3 Important Opportunities......Page 416
References......Page 417
24.1.1 Introduction......Page 419
24.1.3 Sensing......Page 420
24.1.4 Actuating......Page 421
24.1.5 Energy Conversion and Storage......Page 423
24.1.6 Polymer Processing and Device Fabrication......Page 424
References......Page 425
24.2.2 Properties......Page 428
24.2.3 Development of New Materials......Page 429
References......Page 430
24.3.2 Smart Polymers Used in Biotechnology and Medicine......Page 431
24.3.2.2 Thermosensitive Smart Polymers......Page 432
24.3.3 Applications......Page 434
24.3.3.2 Bioseparation—Affinity Precipitation......Page 435
24.3.3.3 Bioseparation—Partitioning in Aqueous Polymer Two-Phase Systems......Page 437
24.3.3.4 Smart Surfaces—Cell Detachment......Page 438
24.3.3.5 Smart Surfaces—Temperature-Controlled Chromatography......Page 439
24.3.3.6 Smart Surfaces—Controlled Porosity, “Chemical Valve”......Page 440
24.3.3.7 Liposomes that Trigger Release of the Contents......Page 441
24.3.3.8 Smart Polymers in Bioanalytical Systems......Page 442
24.3.3.9 Reversibly Soluble Biocatalysts......Page 443
References......Page 444
25.1.2.1 ER Fluid-Based Mount......Page 449
25.1.2.2 MR Fluid-Based Mount......Page 452
25.1.2.3 Piezoelectric Actuator-Based Mount......Page 454
25.1.3.1 Seat Suspension Using ER Damper......Page 455
25.1.3.2 Vehicle Suspension Using MR Damper......Page 457
25.1.3.3 CD-ROM Drive Featuring Piezoelectric Shunt......Page 460
References......Page 462
25.2.1.1 Passive Control with Piezoelectric Materials......Page 464
25.2.2 Linear Theory of Electrodynamics......Page 465
25.2.3.4 Third-Order Shear Deformation Theory......Page 466
25.2.4.2 Hamilton’s Principle with a Rayleigh-Ritz Formulation......Page 467
25.2.5.2 Accurate Description of Electric Potentials in the Piezoelectric Layers......Page 468
References......Page 469
26.2 Piezoelectric Stack Actuator......Page 471
26.2.1 Structure with a Stack Transducer......Page 472
26.3 Integral Force Feedback......Page 473
26.4 Passive Shunt Damping......Page 474
26.4.2 Inductive Shunting......Page 475
26.5 Active Shunt Damping......Page 476
26.6.2 Root Loci......Page 477
References......Page 479
27.1.1 Defining Smart Materials and Smart Structures......Page 481
27.2 Biotelemetry or Biologging: Introduction......Page 482
27.3.1.1 Lotek Wireless Fish and Wildlife Systems......Page 484
27.3.1.3 Star-Oddi Marine Device Manufacturing......Page 485
27.3.1.5 Wildlife Computers......Page 486
27.4.1.1 Fishes......Page 487
27.4.1.2 Cephalopods......Page 489
27.4.1.3 Turtles......Page 490
27.4.3 Assessing Energy Expenditure with Acoustic Telemetry: Fishes, Cephalopods, and Turtles......Page 491
27.4.4 Assessing Energy Expenditure with Acoustic Telemetry: Marine Mammals......Page 493
27.4.5 Assessing Energy Expenditure Using Video Telemetry: Fishes, Cephalopods, and Turtles......Page 494
27.4.6 Assessing Energy Expenditure Using Video Telemetry: Marine Mammals......Page 495
27.5.1 Life History Transmitter......Page 496
27.5.3 Methods of Testing Behavioral Hypotheses Using Biotelemetry......Page 497
References......Page 498
28.1 Introduction and Applications of Molecularly Imprinted Polymers......Page 501
28.2 Fabrication Methods of Molecular Imprinting Technology......Page 502
28.3 Molecular Imprinting Formats......Page 503
References......Page 504
29.1 Introduction......Page 507
29.3 Smart Polymers in Biomedical Sensing......Page 508
29.6 Immunosensors......Page 509
29.8 Drug Delivery......Page 510
References......Page 511
30.2 Chemical Indicating Devices Are Smart......Page 513
30.2.5 Temperature and Time–Temperature Indicators......Page 514
30.2.5.3 Irreversible Temperature Labels......Page 515
30.2.5.6 Chemical Kinetic Basis for TTI Application......Page 516
30.2.5.9 3M Monitormark TTI......Page 517
30.2.6 Anticounterfeiting and Tamper Indicator Devices......Page 518
30.2.6.2 Microtaggants Technology......Page 519
30.2.7 Indicating Device Issues and Limitations......Page 520
References......Page 521
31.1 Introduction......Page 523
31.3.1 Parametric Analysis for the Cantilever Deflection......Page 524
31.4 Fabrication of Piezoelectric Composite Cantilevers......Page 525
31.5 Testing and Evaluation of Cantilevers......Page 526
31.5.2 Testing of Unimorph Cantilever......Page 527
References......Page 528
33.2 Preparation of Highly Ordered Porous Alumina Substrates......Page 531
33.3.1 Nano–Black Lipid Membranes......Page 532
33.3.2 Solvent-Free Pore Suspending Membranes......Page 533
33.4 Insertion of Ion Channel Forming Peptides and Proteins......Page 534
References......Page 535