ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Smart Grids: Fundamentals and Technologies in Electric Power Systems of the future

دانلود کتاب شبکه های هوشمند: مبانی و فناوری ها در سیستم های برق آینده

Smart Grids: Fundamentals and Technologies in Electric Power Systems of the future

مشخصات کتاب

Smart Grids: Fundamentals and Technologies in Electric Power Systems of the future

ویرایش:  
نویسندگان: ,   
سری:  
ISBN (شابک) : 3662609290, 9783662609293 
ناشر: Springer 
سال نشر: 2020 
تعداد صفحات: 425 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 27 مگابایت 

قیمت کتاب (تومان) : 35,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 11


در صورت تبدیل فایل کتاب Smart Grids: Fundamentals and Technologies in Electric Power Systems of the future به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب شبکه های هوشمند: مبانی و فناوری ها در سیستم های برق آینده نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Foreword
Acknowledgments
Contents
Abbreviations
1 Vision and Strategy for the Electricity Networks of the Future
	1.1 The Drivers of Smart Grids
	1.2 The Core Elements of the European Smart Grid Vision
	1.3 Ambitious Changes of the Energy Policy in Europe and the Consequences for Smart Grids
	References
2 Smart Generation: Resources and Potentials
	2.1 New Trends and Requirements for Electricity Generation
	2.2 Volatile Renewable Energy Sources: Wind and Sun
		2.2.1 Wind Power Plants
		2.2.2 Utilization of Solar Power for Electricity Generation
	2.3 Cogeneration of Heat and Power Applying Renewable Energy Sources
		2.3.1 Bio Fuel Power Plants
		2.3.2 Geothermal Power Plants
		2.3.3 Fuel Cells
	2.4 Electric Energy Storage Systems
		2.4.1 Introduction and Categories of Electricity Storage
		2.4.2 Long-Term Bulk Energy Storage Plants
			2.4.2.1 Pumped-Storage Hydroelectric Power Plants
			2.4.2.2 Compressed Air Energy Storage
		2.4.3 Stationary Electric Batteries
		2.4.4 “Power to Gas” by Electrolysis and Methanation
		2.4.5 Electric Energy Management by Thermal Storage
	2.5 Enhanced Flexibility Requirements for Controllable Power Plants
	References
3 Modern Technologies and the Smart Grid Challenges in Transmission Networks
	3.1 Substations: The Network Nodes
		3.1.1 Schemes and Components of Transmission Substations
		3.1.2 Innovative Air Insulated Switchgear Technology
		3.1.3 Gas Insulated Switchgear
	3.2 Control and Automation of Power Systems by Digital Technologies
		3.2.1 The Hierarchy and the Data Processing of Power System Control and Automation
		3.2.2 Protection and Control in Substations
			3.2.2.1 Historical Development
			3.2.2.2 Advanced IED Technology
			3.2.2.3 Protection and Control Schemes in UHV, EHV and HV Substations
		3.2.3 Control Center Technologies
	3.3 Transmission Technologies
		3.3.1 Overview
		3.3.2 AC-Transmission
		3.3.3 DC-Transmission
		3.3.4 Flexible AC Transmission Using Active and Reactive Power Control
	3.4 Present Challenges for Transmission Grids
		3.4.1 The Impact of Fluctuating Wind and Solar Power Generation
		3.4.2 The Dislocation of Generation and Load Centers
		3.4.3 Power In-Feed by Power Electronics and Short Circuit Power
	References
4 Design of Distribution Networks and the Impact of New Network Users
	4.1 Categories of Distribution Networks
	4.2 Primary and Secondary MV Distribution
	4.3 Network Categories for MV and LV
	4.4 Neutral Grounding Concepts
		4.4.1 Resonant Grounding
		4.4.2 Isolated Neutral
		4.4.3 Solid and Low Impedance (Current Limiting) Neutral Grounding
		4.4.4 Combined Methods
		4.4.5 Summary Grounding Methods
		4.4.6 Practical Experiences for Efficient Selection of the Neutral Grounding Method
			4.4.6.1 Industrial 6 kV Network
			4.4.6.2 Industrial 20 kV System
	4.5 Protection for Distribution Networks
		4.5.1 MV Networks
		4.5.2 The Feeding Substations of MV Networks
		4.5.3 LV Networks
	4.6 Distribution Network Operation
		4.6.1 Ensuring Power Quality
		4.6.2 Process Management
	4.7 New Trends in Distribution Systems
		4.7.1 Distributed Generation and New Types of Load
		4.7.2 Impact on Power Quality
	References
5 Smart Operation and Observability at the Transmission Level
	5.1 The Root Causes of Large Blackouts and the Lessons Learned
		5.1.1 Overview and the Voltage Collapse Phenomena
		5.1.2 Northeast USA/Canada Blackout 2003
		5.1.3 Large Supply Interruption in London 2003
		5.1.4 Blackout in Sweden and Denmark 2003
		5.1.5 The Italian Blackout 2003
		5.1.6 The Blackout of Athens 2004
		5.1.7 The Large Disturbance in the Southern Moscow 2005
		5.1.8 The Large System Disturbance in Germany and Continental Europe 2006
	5.2 Control Areas and System Services
		5.2.1 Power System Management
		5.2.2 Frequency Control
		5.2.3 Voltage Control
		5.2.4 Restoration of Supply
		5.2.5 Generation Scheduling: Merit Order Principle
		5.2.6 System Service Provision by Distributed Energy Resources
	5.3 Power System Observation and Intelligent Congestion Management
		5.3.1 Need for More Observation in the Power System
		5.3.2 Prediction Methods for a Secure Power System Operation
			5.3.2.1 Basic Prediction Principles of Power Injections from Volatile RES
			5.3.2.2 Day-Ahead Congestion Forecast (DACF) in the Interconnected Transmission System
			5.3.2.3 The Need for Network Level Overlapping Congestion Forecasts
			5.3.2.4 The Cellular Approach for Predictions, Balancing and Schedule Management
		5.3.3 Modern Protection Concepts
			5.3.3.1 Protection Security Assessment
			5.3.3.2 Adaptive Protection
			5.3.3.3 System Protection
		5.3.4 Wide Area Monitoring by Phasor Measurement
		5.3.5 Steady State and Dynamic Security Assessment
		5.3.6 Weather Condition Monitoring and Flexible Line Loading
	5.4 Conclusions
	References
6 The Three Pillars of Smart Distribution
	6.1 The Relationship Between Smart Grids and Smart Markets in Distribution Systems
	6.2 Pillar 1: Automation and Remote Control of Local Distribution Networks
		6.2.1 Voltage Control
			6.2.1.1 Traditional Voltage Quality Control and the Adaptation to the Smart Grid Conditions
			6.2.1.2 Involvement of the Network Users into Voltage Control
		6.2.2 Opportunities for Power Flow Control
		6.2.3 Automated and Remote Controlled Recovery of Supply After Fault Trips
		6.2.4 Enhanced MV Protection Concepts
			6.2.4.1 The Changing Protection Conditions [1]
			6.2.4.2 Adapted Protection Schemes in Distribution Networks with Connected DERs [6]
			6.2.4.3 Phasor Measurement in Distribution Networks
		6.2.5 The Economy of the Smart Grid Enhancement in Distribution
	6.3 Pillar 2: Flexibility by Virtual Power Plants: Smart Aggregation
		6.3.1 Basics of Virtual Power Plants
		6.3.2 Demand Side Management: The Role of Storage and Controllable Loads
		6.3.3 Business Models of Virtual Power Plants on Prospective Markets
	6.4 Pillar 3: Smart Metering and Market Integration of the Consumers
		6.4.1 Basics of the Digital Metering Technology
		6.4.2 Dynamic Tariffs
		6.4.3 The Impact on Consumer Behavior: Demand Side Response
		6.4.4 Electric Vehicle Management
	6.5 Communication Needs for Smart Distribution
	References
7 Design of the Smart Energy Market
	7.1 Prospective Markets for Power Supply: A Vision and a Case Study
	7.2 Smart Services for Network Operations and Electricity Markets
		7.2.1 The Overview of the Smart Services
		7.2.2 Metering Services
		7.2.3 Data Communication and Information Management
	References
8 Advanced Information and Communication Technology: The Backbone of Smart Grids
	8.1 The Importance of Uniform ICT Standards for Smart Grids
		8.1.1 Functions of ICT Standards
		8.1.2 Communication Standards
		8.1.3 Standards for Data Management
		8.1.4 Information Security
	8.2 The History of Communication Development for Supervision and Control in Power Systems
		8.2.1 The Design Development of Remote Substation Control
		8.2.2 Introduction of Digital Communication Protocols
	8.3 Seamless Communication by Applying the Standard Series IEC 61850
		8.3.1 The Reference Model and the Structure of IEC 61850
		8.3.2 The Data Model
		8.3.3 Three Protocols on One Bus: The Communication Service Structure
		8.3.4 Protocol Services
		8.3.5 Independent Engineering
		8.3.6 Conformance and Acceptance Testing
		8.3.7 New Standard Parts for Smart Grid Extensions
	8.4 Data Management Based on the Common Information Model CIM IEC 61968/70
	8.5 Data and Communications Security IEC/TS 62351
	8.6 Global Activities for Uniform Smart Grid Standards
		8.6.1 The Reference Model IEC/TR 62357
		8.6.2 The European Mandate M/490
		8.6.3 Global Activity Analysis Within the E-Energy/Smart Grid Standardization Roadmap
	Appendix
	References
9 Smart Grids Worldwide
	9.1 Smart Grids for the World’s Largest Power Systems
		9.1.1 Ambitious Power System Development Strategy in China
		9.1.2 Development Targets for Interconnections in the USA
		9.1.3 The Power System Enhancement in Russia and its Neighbouring Countries
	9.2 Overview of Smart Grid Projects in Europe
		9.2.1 Projects of the 5th–8th Framework Programmes of the European Union
		9.2.2 The European Inventory of National Smart Grid Projects
	9.3 Selected Smart Grid Application Experiences
		9.3.1 Web2Energy: The Three Pillars of Smart Distribution in Practice
		9.3.2 RegModHarz: Region Supplied by a Virtual Power Plant
		9.3.3 DSR Projects in the USA
		9.3.4 The South Korean Smart Grid Test-Bed on Jeju Island
	References




نظرات کاربران