دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1 نویسندگان: Simar Preet Singh (editor), Arun Solanki (editor), Anju Sharma (editor), Zdzislaw Polkowski (editor), Rajesh Kumar (editor) سری: ISBN (شابک) : 0367741105, 9780367741105 ناشر: CRC Press سال نشر: 2021 تعداد صفحات: 289 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 74 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Smart Computing and Self-Adaptive Systems (Computational Intelligence Techniques) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب محاسبات هوشمند و سیستم های خود تطبیقی (تکنیک های هوش محاسباتی) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب قصد دارد جنبههای مشکلساز مختلف محاسبات هوشمند نوظهور و فنآوریهای خود انطباق شامل یادگیری ماشین، هوش مصنوعی، یادگیری عمیق، رباتیک، محاسبات ابری، محاسبات مه، الگوریتمهای داده کاوی، از جمله برنامههای کاربردی هوشمند و هوشمند در حال ظهور مرتبط با این حوزههای تحقیقاتی را پوشش دهد. پوشش بیشتر شامل پیادهسازی معماری خود انطباق برای دستگاههای هوشمند، مدلهای خودسازگار برای شهرهای هوشمند و خودروهای خودران، محاسبات غیرمتمرکز خود انطباقی در شبکههای لبه، سیستمهای مبتنی بر هوش مصنوعی آگاه از انرژی، شبکههای M2M، حسگرها، تجزیه و تحلیل دادهها، الگوریتمها و ابزارهای مهندسی سیستمهای خود و soap میشود.
بهعنوان راهنمای فناوریهای آینده کاملاً خودکار مبتنی بر
خوددرمانی و خودسازگاری عمل میکند
درباره تواناییهای محاسباتی هوشمند و سیستمهای خود تطبیقی
بحث میکند
ابزارها و تکنیکهای مدیریت داده را نشان میدهد و نیاز به
کاربرد و ادغام دادهها را برای بهبود کارایی سیستمهای خود
تطبیقآینده آینده توضیح میدهد. سیستم ها
زمینه هایی مانند اتوماسیون، رباتیک، علوم پزشکی، علوم زیست
پزشکی و کشاورزی، مراقبت های بهداشتی و غیره را پوشش می دهد
این کتاب برای محققان و دانشجویان فارغ التحصیل در زمینه یادگیری ماشین، فناوری اطلاعات و هوش مصنوعی است.
The book intends to cover various problematic aspects of emerging smart computing and self-adapting technologies comprising of machine learning, artificial intelligence, deep learning, robotics, cloud computing, fog computing, data mining algorithms, including emerging intelligent and smart applications related to these research areas. Further coverage includes implementation of self-adaptation architecture for smart devices, self-adaptive models for smart cities and self-driven cars, decentralized self-adaptive computing at the edge networks, energy-aware AI-based systems, M2M networks, sensors, data analytics, algorithms and tools for engineering self-adaptive systems, and so forth.
Acts as guide to Self-healing and Self-adaptation based fully
automatic future technologies
Discusses about Smart Computational abilities and
self-adaptive systems
Illustrates tools and techniques for data management and
explains the need to apply, and data integration for
improving efficiency of big data
Exclusive chapter on the future of self-stabilizing and
self-adaptive systems of systems
Covers fields such as automation, robotics, medical sciences,
biomedical and agricultural sciences, healthcare and so forth
This book is aimed researchers and graduate students in machine learning, information technology, and artificial intelligence.
Cover Half Title Series Page Title Page Copyright Page Table of Contents Editors Contributors Chapter 1: Using Luong and Bahdanau Attention Mechanism on the Long Short-Term Memory Networks: A COVID-19 Impact Prediction Case Study 1.1 Introduction: Deep Learning 1.2 RNN and LSTMs 1.2.1 Recurrent Neural Networks 1.2.2 LSTM Architecture 1.2.2.1 Input Gate 1.2.2.2 Forget Gate 1.2.2.3 Cell State 1.2.2.4 Output Gate 1.3 Sequence Prediction 1.4 Attention Mechanism 1.4.1 Bahdanau Attention Mechanism 1.5 Luong Attention Mechanism 1.5.1 Comparison of Luong and Bahdanau Attention Mechanism 1.6 COVID-19 Data Prediction 1.7 LSTM Implementation Using Keras 1.7.1 LSTM Sequence-to-Sequence Model 1.7.2 LSTM Sequence-to-Sequence Implementation with Luong Attention 1.7.3 LSTM Sequence-to-Sequence with Bahdanau Attention 1.8 Results and Discussion 1.9 Conclusion References Chapter 2: A Novel Missing Data Imputation Algorithm for Deep Learning-Based Anomaly Detection System in IIoT Networks 2.1 Introduction 2.2 An Overview on Existing ADS Systems 2.3 Proposed ADS System 2.3.1 Overview of the Proposed EDMDI Algorithm-Based ADS System 2.3.2 Architecture of the Proposed Scheme 2.3.3 Enhanced DNN for Missing Data Imputation Algorithm 2.4 Theoretical Analysis 2.5 Results and Discussion 2.5.1 Datasets 2.5.2 Evaluation Metrics 2.5.3 Experimental Results 2.5.4 Performance Comparison of DNN-Based ADS System and EDMDI Algorithm-Based ADS System 2.6 Conclusion References Chapter 3: Internet of Things: Concept, Implementations and Applications 3.1 Introduction 3.2 Literature Review 3.3 Sensors and Actuators 3.4 Introduction to Arduino 3.4.1 Size of the Board 3.5 Concept of Smart Cities and Smart Homes 3.5.1 Smart Home 3.5.2 Smart Cities 3.6 Introduction to IIoT 3.7 Implementation of IoT in Various Fields 3.8 Challenges in IoT 3.8.1 Privacy Concern 3.8.2 Complexity 3.8.3 Dependency 3.8.4 Society 3.9 Conclusion and Future Aspect References Chapter 4: Output-Oriented Multi-Pane Mail Booster: Data Crawling and Results in All Category Panes of a Mail 4.1 Introduction 4.2 Related Work 4.3 Proposed Methodology 4.4 Results 4.5 Conclusion References Chapter 5: Eyesight Test through Remote Virtual Doctor Using IoT 5.1 Introduction 5.2 Related Work 5.3 Proposed Work 5.4 Results 5.5 Conclusion References Chapter 6: Recent Trends and Advances in Deep Learning-Based Internet of Things 6.1 Introduction 6.2 Advanced Deep Learning Techniques 6.2.1 Unsupervised and Transmit Learning 6.2.2 Online Learning 6.2.3 Optimization Techniques in Deep Learning 6.2.4 Deep Learning in Distributed Systems 6.3 Applications of IoT Using Deep Learning 6.3.1 IoT Security 6.3.2 Smart Healthcare 6.3.3 Smart Home 6.3.4 Smart Conveyance 6.3.5 Smart Industry 6.3.6 Smart Agriculture 6.4 Conclusion and Future Aspects References Chapter 7: Prediction and Classification Analysis of Type-2 Diabetes Using Machine Learning Approaches 7.1 Introduction 7.2 Background 7.3 The Different Prediction Models of Machine Learning 7.3.1 SVM 7.3.2 Naïve Bayes 7.3.3 Logistic Regression 7.3.4 K-NN 7.3.5 Random Forest 7.4 Methodology and Model Diagram of the Proposed Work 7.4.1 Describes the Methodology and Model Diagram for the Proposed Work 7.5 Results and Their Experiments 7.6 Conclusion and Future Scope References Chapter 8: Internet of Thing-Based Monitoring Systems and Their Applications 8.1 Introduction 8.2 Advantages 8.3 Applications in IoT 8.4 General Architecture of the System 8.5 Components Used by IoT 8.6 Raspberry Pi/Arduino 8.7 RFID Tag 8.8 Condition Relay 8.9 Bluetooth/Wi-Fi 8.10 Data Server 8.11 Data Analysis: ThingSpeak 8.11.1 Features of ThingSpeak 8.12 Sensors 8.13 Types of Sensors 8.13.1 PIR Sensor 8.13.2 Temperature Sensor 8.13.3 IR Sensor 8.13.4 UV Sensor 8.13.5 Touch Sensor 8.14 IoT-Based Monitoring System Applications 8.14.1 Health Monitoring System 8.14.2 Temperature Monitoring System 8.14.3 Smart Irrigation System for Agriculture 8.15 Machine Monitoring System 8.16 Marine Radioactivity Monitoring System 8.17 Vehicle Tracking and Fuel Monitoring System 8.18 Android-Based Monitoring System 8.19 Applied Algorithm 8.19.1 Performance of Symmetric Key 8.19.2 Blowfish Algorithm 8.19.3 Cipher-Attribute-Based Encryption 8.20 Conclusion References Chapter 9: A Progressive Method to Monitor Power Using IoT 9.1 Introduction 9.2 Literature Study 9.2.1 System Design to Detect Load Automatically 9.2.1.1 Collection of Data on Power Consumption 9.2.1.2 Extracting Data of Power Load 9.2.1.3 Processing of Power Load Data 9.2.1.4 Tracking of Data 9.3 Objectives of the Power Monitoring System 9.4 Existing System 9.5 Power Monitoring 9.6 Internet of Things (IoT) 9.6.1 Applications of IoT 9.6.1.1 Big Data Analytics 9.6.1.1.1 Xplenty 9.6.1.1.2 Power BI 9.6.1.1.3 Microsoft HDInsight 9.6.1.1.4 Skytree 9.6.1.1.5 Talend 9.6.1.1.6 Splice Machine 9.6.1.1.7 Spark 9.6.1.1.8 Plotly 9.6.1.1.9 Apache SAMOA 9.6.1.1.10 Lumify 9.6.1.1.11 Elastic Search 9.6.1.1.12 R Programming 9.7 Artificial Intelligence 9.8 Cloud Storage 9.8.1 Ubidots Cloud Service 9.8.1.1 Ease of Use 9.8.1.2 Support 9.8.1.3 Fairness 9.8.1.4 Sensors 9.9 Architecture for the Proposed Power Monitoring System 9.10 Sensor Components Used for Power Monitoring (Figures 9.2–9.5) 9.11 Future Bill Prediction 9.12 Conclusion References Chapter 10: Cognitive Computing-Powered, NLP-Based, Autonomous Question-Answering System 10.1 Introduction 10.2 Background 10.3 Concept Modeling of “Concept Model”, “Experience/Knowledge-Base Model”, and the “Interface Model” of the Proposed Cognitive Agent “QAEdu” 10.3.1 Proposed Architecture 10.3.2 Question Understanding 10.3.2.1 Evaluation of Extraction Process for Qtype and Its Semantic Components 10.3.3 Linguistic Component Extraction (Entity Disambiguation and Association Detection) from the Question 10.4 Implementation of Experience and Knowledge Model 10.4.1 Knowledge-Base Construction 10.4.1.1 Evaluation of Extraction Process of Triples from the Documents for the Construction of Knowledge Base 10.4.2 Methods for Answer Searching and Extraction from the Knowledge Base 10.5 Methodology 10.6 Implementation of Interface Model 10.6.1 Experimental Design and Result 10.6.2 Interface Module Designing 10.6.3 Result 10.6.4 Evaluation of QAEdu Question-Answering System 10.7 Conclusion 10.8 Challenges and Future Aspects 10.8.1 Hardware Implementation for Providing the Embodiment to the Cognitive Agent 10.9 Discussion References Chapter 11: Smart Cities and Industry 4.0 11.1 Introduction 11.1.1 Introduction to Smart City 4.0 11.1.2 Smart City vs. Industry 11.2 4IR 11.2.1 Four Concepts on Industry 4.0 11.2.1.1 Educating People 11.2.1.2 Organizational Transformation 11.2.1.3 Decentralization of Work Networks 11.2.1.4 Sustainability 11.2.2 Integration of 4IR Technology 11.2.2.1 Platform Capabilities 11.2.2.2 No-Code Development Capabilities Scenario 11.2.2.3 Low-Code Development Capabilities Scenario 11.2.2.4 API-Based Ecosystem 11.3 The Right Data Platform 11.3.1 Machine Learning into 4IR 11.3.2 Big Data and IoT 11.4 Benefits of Smart City 4. 0 11.4.1 Data-Based and Transportation 11.4.2 Safer Communities in the Future 11.4.3 Reduction of the Environmental Footprint and Increase in Digital Equity 11.4.4 Newer and Greater Economic Opportunities 11.4.5 Infrastructure Improvement 11.5 Limitations of Smart City 4.0 11.6 Conclusion and Future Aspects References Chapter 12: Deep Learning Approach in Malware Hunting 12.1 Introduction 12.1.1 Deep Learning 12.1.2 Attacks 12.2 Learning Techniques 12.2.1 Artificial Neural Network 12.2.2 Convolutional Neural Network 12.2.3 Recurrent Neural Network 12.2.4 Multilayer Perceptron Neural Network 12.2.5 Generative Adversarial Network 12.2.6 Restricted Boltzmann Machine 12.2.7 Deep Belief Network 12.3 Activation Functions 12.3.1 Role of Activation Function 12.3.2 Types of Activation Function 12.3.2.1 Binary Step Function 12.3.2.2 Linear Activation Function 12.3.2.3 Non-Linear Activation Functions 12.3.2.4 Sigmoid/Logistic 12.3.2.5 ReLU (Rectified Linear Unit) 12.3.2.6 Leaky ReLU 12.3.2.7 Parameter ReLU 12.3.2.8 Softmax 12.3.2.9 Swish 12.4 Malware Attacks 12.4.1 Introduction to Malware 12.4.2 Categories of Malware 12.4.3 Stages 12.4.3.1 Static Properties Analysis 12.4.3.2 Manual Code Reversing 12.5 Deep Learning over Malware Attacks 12.5.1 Techniques 12.5.1.1 Signature-Based Detection 12.5.1.2 Heuristic-Based Detection 12.5.1.3 Static Analysis 12.5.1.4 Dynamic Analysis 12.5.1.5 Hybrid Analysis 12.6 Result 12.7 Conclusion References Blog Chapter 13: Prediction of Breast and Lung Cancer, Comparative Review and Analysis Using Machine Learning Techniques 13.1 Introduction 13.2 Literature Review 13.3 Machine Learning Techniques 13.3.1 Logistic Regression Classifier 13.3.2 Support Vector Machine (SVM) Classifier 13.3.3 Naive Bayes Classifier 13.3.4 Decision Tree Classifier 13.3.5 k-Nearest Neighbor Classifier 13.4 Process Flow Diagram 13.5 Dataset and Implementation 13.5.1 Breast Cancer Dataset 13.5.1.1 Breast Cancer Dataset Attributes 13.5.1.2 Dataset Visualization of Breast Cancer 13.5.1.3 Class Visualization of Breast Cancer 13.5.1.4 Correlation 13.5.1.5 Implementation Snapshots ( Figure 13.10) 13.5.1.6 Performance Metrics 13.5.1.7 Accuracy Metrics ( Table 13.2) 13.5.1.8 Accuracy Table 13.5.2 Lung Cancer 13.5.2.1 Attribute Information 13.5.2.2 Dataset Visualization of Lung Cancer 13.5.2.3 Class Label Visualization 13.5.2.4 Accuracy Table 13.5.2.5 ROC Curve 13.6 Comparison and Analysis 13.7 Conclusion References Index